

1 **The A-C Linker controls centriole cohesion and duplication**

2

3 Lorène Bournonville¹, Marine. H. Laporte^{1,2}, Susanne Borgers¹, Paul Guichard^{1*} and

4 Virginie Hamel^{1*}

5

6 **Affiliations:**

7 ¹ University of Geneva, Faculty of Sciences, Department of Molecular and Cellular

8 Biology, Switzerland.

9 ²University of Lyon, Université Claude Bernard Lyon 1, MeLiS, UCBL, CNRS UMR

10 5284, INSERM U1314, Institut NeuroMyoGène, Lyon 69008, France

11 *co-corresponding authors

12 Correspondence to: virginie.hamel@unige.ch and paul.guichard@unige.ch.

13

14

15

16

17

18

19

20

21

22

23 **Abstract**

24 Centrioles are evolutionarily conserved barrel-shaped organelles playing crucial roles
25 in cell division and ciliogenesis. These functions are underpinned by specific structural
26 sub-elements whose functions have been under investigation since many years. The A-
27 C linker structure, connecting adjacent microtubule triplets in the proximal region, has
28 remained unexplored due to its unknown composition. Here, using ultrastructure
29 expansion microscopy, we characterized two recently identified A-C linker proteins,
30 CCDC77 and WDR67, along with a newly discovered protein, MIIP. Our findings
31 reveal that these proteins localize between microtubule triplets at the A-C linker,
32 forming a complex. Depletion of A-C linker components disrupt microtubule triplet
33 cohesion, leading to breakage at the proximal end. Co-removal of the A-C linker and
34 the inner scaffold demonstrates their joint role in maintaining centriole architecture.
35 Moreover, we uncover an unexpected function of the A-C linker in centriole duplication
36 through torus regulation, underscoring the interplay between these protein modules.

37

38 **Keywords**

39 A-C linker, centriole, expansion microscopy, centriole duplication, torus, PCM,
40 mitosis, ciliogenesis.

41

42 **Introduction**

43 Centrioles are evolutionarily conserved macromolecular complexes critical for a wide
44 range of fundamental cellular processes, including cell division, motility, and signaling
45 ^{1,2}. In dividing cells, two centrioles are embedded within the pericentriolar matrix,
46 together forming the centrosome, which acts as a microtubule-organizing center
47 (MTOC) essential for the accurate segregation of genetic material into daughter cells ³⁻

48 5. During ciliogenesis, centrioles, functioning as basal bodies, dock to the plasma
49 membrane, initiating the formation of cilia or flagella—cellular extensions that serve
50 as sensory antennas or drivers of fluid and cell movement⁶⁻⁹.

51 Each sub-structural component of the centriole has a highly specific role in these
52 biological processes. Human centrioles exhibit a nine-fold symmetrical, microtubule-
53 based cylindrical structure, measuring approximately 450 nm in length and 250 nm in
54 diameter¹⁰. They are polarized along a proximal-distal axis, with distinct architectural
55 features at each end. The distal extremity, about 50 nm long, contains microtubule
56 doublets and is decorated with subdistal and distal appendages crucial for
57 ciliogenesis^{11,12}. The central core region spans approximately 250 nm where lies an
58 inner scaffold, which is critical for maintaining centriole cohesion¹³⁻¹⁵. Proximally, the
59 cartwheel structure, approximately 150 nm long, is essential for centriole duplication
60 and imparts the nine-fold symmetry of the organelle¹⁶⁻¹⁹. The cartwheel is connected
61 to the microtubule triplets (MTTs), consisting of a complete A-microtubule and
62 incomplete B- and C-microtubules, via the pinhead structure^{10,20}. Neighboring
63 proximal MTTs are bridged by the A-C linker, a structural element spanning 35-45%
64 of the centriole length^{13,21}. Although its function remains enigmatic, it is hypothesized
65 to contribute to the structural cohesion of the centriole^{22,23}. Additionally, the proximal
66 region is encircled by an amorphous torus, composed in part of CEP152 and CEP63,
67 which plays a key role in recruiting PLK4²⁴⁻²⁶. PLK4 phosphorylates STIL to initiate
68 cartwheel formation through SAS-6 oligomerization, and procentriole assembly during
69 the S phase, concurrent with DNA replication²⁷⁻³⁰.

70 Despite advances in understanding the molecular composition and function of various
71 centriole components, including the cartwheel, inner scaffold, and distal appendages
72^{13,31-41}, the A-C linker structure has remained poorly characterized since its initial

73 description in the 1960s ⁴². The evolutionary conserved protein POC1 (Proteome Of
74 Centriole 1) has been suggested as a component of the A-C linker, but its localization
75 appears species-specific. For instance, in *Chlamydomonas reinhardtii*, POC1 is thought
76 to localize to the proximal region of centrioles ^{22,43}, while in human osteosarcoma cells,
77 we have demonstrated that POC1B is a central core component ^{13,14}. More recently,
78 cryo-tomography analysis of POC1 in *Tetrahymena thermophila* proposed that POC1
79 is associated with the microtubule triplets, rather than the A-C linker, and is required
80 for centriole structural integrity ¹⁵.

81 To elucidate the molecular identity of the A-C linker, we employed ultrastructure
82 expansion microscopy (U-ExM), a technique that enables nanoscale protein mapping
83 of centrioles ⁴⁴. We previously screened 23 candidate proteins in mature centrioles from
84 U2OS cells, and identified two poorly uncharacterized proteins, CCDC77 and WDR67,
85 as putative A-C linker components ²¹.

86 Building on these findings, we aimed to unravel the function of the A-C linker.
87 In addition to CCDC77 and WDR67, we identified a novel A-C linker component,
88 MIIP (migration and invasion inhibitory protein). Using U-ExM in combination with
89 cell biology approaches, we revealed two crucial functions of the A-C linker proteins
90 —CCDC77, WDR67, and MIIP—in centriole cohesion but also in duplication through
91 torus assembly. Collectively, this study establishes the role of the A-C linker in
92 centriole function, offering a foundation for exploring its broader significance in
93 cellular architecture and division processes.

94

95 **Results**

96 **MIIP, together with CCDC77 and WDR67, localizes at A-C linker level in human
97 centrioles.**

98 We identified recently CCDC77 and WDR67 as two putative A-C linker
99 components ²¹. CCDC77 is a long coiled coil protein of 77KDa, and WDR67, also
100 known as TBC1D31, is a 125 KDa protein containing 7 WD repeats, a 170 amino acid
101 Rab-GAP-TBC domain, several coiled coil regions, and a C-terminal tail that mediates
102 direct interaction with the E3 ubiquitin-protein ligase praja2 (PJA2) ⁴⁵. We first
103 capitalized on these two proteins to ask whether other proteins could be part of the A-
104 C linker. To explore this, we conducted a cross DepMap analysis ^{46,47}, which revealed
105 co-dependencies between genes expression, specifically focusing on the relationships
106 between CCDC77 and WDR67 (**Fig. 1a**). Among the top 100 genes, we identified 12
107 that shared co-dependencies with CCDC77 and WDR67: WDR8, SPICE1, CEP135,
108 TUBE1, TUBD1, TEDC2, RTTN (rotatin), CEP44, CEP295, PP1R35, CEP152, and
109 MIIP. Notably, 11 out of these 12 genes encode characterized centriolar proteins, most
110 of which localize to the proximal end of the centriole. The exception is MIIP (Migration
111 and Invasion Inhibitory Protein, also known as IIP45), a poorly characterized protein
112 known for its role in inhibiting cell migration and invasion via its interaction with the
113 insulin-like growth factor binding protein 2 (IGFBP-2) ⁴⁸ (**Fig. 1a**). Although MIIP was
114 previously detected in centrosome mass spectrometry analyses ⁴⁹, it has not been
115 characterized at the centriole level. Consequently, we decided to focus on MIIP for
116 further investigation.

117 We first monitored the localization of MIIP at centrioles in U2OS cells using
118 regular immunofluorescence microscopy. Our results confirmed that MIIP is
119 consistently associated with centrioles throughout the cell cycle both in interphase (**Fig.**
120 **1b**) and mitosis (**Fig. 1c**). Using U-ExM to further gain in resolution and by staining
121 for tubulin as a proxy for the centriolar microtubule wall, we found that MIIP localizes
122 to the proximal region of centrioles and corresponds thus to be *a bona fide* centriolar

123 component (**Fig. 1d and Extended data Fig. 1c**). Next, to further investigate whether
124 MIIP could be a component of the A-C linker, we analyzed MIIP's longitudinal
125 localization in the proximal region and revealed that it spans 37% +/- 9 of the total
126 centriole length, similarly to CCDC77 and WDR67's coverages of 36% +/- 10 and 39%
127 +/- 9 respectively (**Fig. 1d-f**)²¹. The analysis of MIIP radial position relative to the
128 microtubule wall showed that it localizes at the level of the MTT compared to the
129 tubulin center of mass signal (-10 nm +/- 6), close to the values of CCDC77 (-4 nm +/-
130 5) and WDR67 (3 nm +/- 8) (**Fig. 1g**). Next using time series reconstructions of
131 centriole assembly using tubulin as a proxy as we previously established²¹, we
132 monitored the appearance and elongation of MIIP. Like observed for CCDC77 and
133 WDR67, we found that MIIP is recruited on procentrioles when the average tubulin
134 length reaches around 115 nm (**Fig. 1h, i**), a length which marks the beginning of the
135 elongation phase during centriole assembly²¹.

136 Finally, to determine whether MIIP is positioned between microtubule triplets,
137 where the A-C linker is expected to reside, we analyzed its distribution using U-ExM
138 in top-viewed centrioles. A plot profile analysis revealed that MIIP forms 9 distinct
139 foci, consistent with localization between the microtubule triplets, like the pattern seen
140 with CCDC77 and WDR67 (**Fig. 1j**). However, due the 20 nm distance between
141 microtubule triplets^{20,50} and the 60-70 nm resolution of U-ExM⁵¹, we employed
142 iterative expansion microscopy (iU-ExM) to achieve a higher resolution of 10 nm⁵².
143 This higher resolution confirmed that MIIP, along with CCDC77 and WDR67, is
144 indeed localized between the microtubule triplets (**Fig. 1k**). Collectively, these findings
145 demonstrate that MIIP is a novel component of the A-C linker in human cells (**Fig. 1l**)

146

147 **Co-dependency of CCDC77, WDR67 and MIIP complex.**

148 The A-C linker is a conserved centriole structural element whose complexity
149 revealed in cryo-tomography suggests that it is composed by several proteins and that
150 probably have multiple intricate interactions^{15,20,22,50}. Therefore, we wondered whether
151 the loss of one of the three components identified in this study could lead to the
152 destabilization of the others. To test this, we monitored the localization of CCDC77,
153 WDR67 and MIIP in cells depleted of each of the individual components using siRNA
154 treatment (**Fig. 2 and Extended data Fig. 1a-d**). We initially validated the specificity
155 of each staining and the efficacy of each siRNA treatment by monitoring the overall
156 centrosomal signals corresponding to CCDC77, WDR67, and MIIP in siCCDC77,
157 siWDR67, and siMIIP conditions, respectively (**Fig. 2a-i**). Consistently with these
158 proteins being structurally incorporated inside centrioles, we observed that the three
159 proteins were mostly depleted from one centriole (53.4% in siCCDC77, 63.5% in
160 siWDR67 and 51.7% in siMIIP), and more rarely in both centrioles (22.6% in
161 siCCDC77, 29.5% in siWDR67 and 8.2% in siMIIP) (**Fig. 2e, g, i**). This result suggests
162 that these proteins are stably incorporated and only the newly formed centriole is
163 depleted. To discriminate between the mother and daughter centrioles, we co-stained
164 cells depleted for CCDC77, WDR67 or MIIP with CEP164 (yellow arrow), a distal
165 appendage protein present on mother centrioles⁵³ and the respective A-C linker
166 proteins (**Extended Data Fig. 1a-d**). We found that the depletion occurred at the level
167 of the daughter centrioles in the three conditions (**Extended Data Fig. 1a-d**),
168 confirming that these three proteins are stably incorporated components of the centriole
169 and mainly new centrioles assembled in the absence of the proteins are depleted.

170 Next, we monitored the impact of the depletion of the three A-C linker proteins
171 on the localization of each other. Interestingly, we found that CCDC77 signal was
172 strongly reduced upon siWDR67 but only mildly upon MIIP depletion (**Fig. 2a, d**).

173 Reciprocally, the fluorescent signal corresponding to WDR67 was strongly reduced
174 upon siCCDC77 treatment (**Fig. 2b, f**). This result suggests that WDR67 and CCDC77
175 proteins are interdependent for their localization at the proximal region of centrioles. In
176 contrast to CCDC77 however, we found that WDR67 localization was greatly impaired
177 in siMIIP treatment (**Fig. 2b, f**), indicating that WDR67 localization at centrioles relies
178 both on CCDC77 and MIIP. We next assess if MIIP localization was affected by
179 CCDC77 or WDR67 depletion. Consistently, we found that MIIP distribution at
180 centrioles was strongly reduced upon WDR67 depletion but only moderately upon
181 CCDC77 depletion, probably as an indirect effect of the partial loss of WDR67 in that
182 condition (**Fig. 2c, h**).

183 To further investigate whether the three identified A-C linker protein could
184 interact and being part of the same complex, we used a microtubule displacement assay
185 as previously published^{13,54}. We found that mcherry-CCDC77 binds microtubules (M)
186 upon transient transfection in U2OS cells, in contrast to GFP-WDR67 and GFP-MIIP
187 that stay cytoplasmic (C) or at the level of the centrosome (**Fig. 2j-l** and **Extended Data**
188 **Fig 1e**). To assess whether CCDC77 can facilitate the displacement of WDR67 and
189 MIIP onto microtubules, we co-transfected these proteins with mCherry-CCDC77.
190 Remarkably, both GFP-WDR67 and GFP-MIIP were independently displaced onto
191 microtubules (93% and 78%, respectively), indicating an interaction between these
192 proteins (**Fig. 2m-o** and **Extended Data Fig 1f-h**). Notably, MIIP recruitment to
193 microtubules was enhanced in the presence of WDR67 (**Fig. 2p, q**), suggesting that the
194 three proteins can form a microtubule-associated complex (**Fig. 2r**).

195

196 **WDR67 and CCDC77 but not MIIP are important for ciliogenesis.**

197 We next investigated the function of the A-C linker components. CCDC77 and
198 WDR67 were previously shown to be important for ciliogenesis^{45,55,56}, suggesting a
199 potential role for the A-C linker in cilia formation. However, since both display
200 additional localizations besides the A-C linker, at satellites^{55,56} and at distal appendages
201 for CCDC77 and at the proximal torus for WDR67²¹, it remains unclear whether their
202 role in ciliogenesis is directly linked to the A-C linker. Given that MIIP is exclusively
203 localized to the A-C linker, we investigated whether it also plays a role in ciliogenesis,
204 to directly assess the involvement of the A-C linker structure in this process.

205 To do so, we treated RPE1 cells with either siRNA control or siCCDC77,
206 siWDR67 or siMIIP and analyzed the impact on ciliogenesis by counting the number
207 of cilia formed relative to the control (**Extended Data Fig. 2**). Consistently with
208 previous reports^{45,55}, we found that 43% of CCDC77-depleted cells and 51% of
209 WDR67-depleted cells displayed a primary cilium stained with acetylated tubulin, in
210 contrast to the 73% observed in control cells, indicating that both proteins are important
211 to regulate ciliogenesis (**Extended Data Fig. 2a-e**). Moreover, among the ciliated cells,
212 31% and 34% displayed shorter cilia in CCDC77-depleted and WDR67-depleted cells,
213 respectively (**Extended Data Fig. 2f, g**). However, depletion of MIIP did not impact
214 ciliogenesis (**Extended Data Fig. 2d, e**), suggesting that the ciliogenesis defect
215 observed might be triggered by a mechanism independent of the A-C linker.

216 To further investigate the underlying causes of this phenotype and given that
217 CCDC77 localizes to the distal appendages of mature centrioles, we used U-ExM to
218 examine whether this localization was affected in cells depleted of CCDC77 or
219 WDR67, while remaining intact upon MIIP depletion (**Extended Data Fig. 2h-k**). We
220 observed that the distal localization of CCDC77 in RPE1 cells was significantly
221 reduced upon depletion of CCDC77 and WDR67 but was less affected with MIIP

222 (Extended Data Fig. 2h, i). A similar trend was noted in U2OS cells, where the
223 reduction of CCDC77 at distal appendages was not significant upon MIIP knockdown
224 (Extended Data Fig. 2j, k). These findings underscore a possible correlation between
225 CCDC77 at appendages and ciliogenesis, suggesting that the ciliogenesis defects could
226 be associated with the distal localization of CCDC77 rather than with the function of
227 the A-C linker. In the same line, CCDC77 and WDR67 have been found at satellites,
228 known to affect ciliogenesis^{55,56}. Altogether, these results indicate that the observed
229 ciliogenesis defect is probably not due to A-C linker removal.

230

231 **The A-C linker maintains cohesion between the microtubube triplets in the**
232 **proximal region**

233 Since the A-C linker sub-element is bridging adjacent MTTs, a key prediction
234 is that its loss would affect centriole architecture by destabilizing centriolar MTTs
235 cohesion. To test this hypothesis, we analyze the centriole integrity using U-ExM in
236 control and siRNA-mediated depletion of A-C linker components in U2OS cells (Fig.
237 3). Importantly, we found that the loss of CCDC77, WDR67 or MIIP resulted in
238 approximately 25-30% of broken centrioles (Fig. 3a-f, white arrows). Additionally, re-
239 expression of RNAi-resistant version of CCDC77, WDR67 or MIIP rescued this
240 phenotype, highlighting the specificity of the observed effect (Fig. 3a-f).

241 We next wondered whether the dual depletion of A-C linker components would
242 exacerbate the phenotype. To address this, we treated U2OS cells with siRNA targeting
243 CCDC77 and WDR67 and analyzed their centriolar phenotype by U-ExM. We found
244 around 45% of broken centrioles in this condition (Fig. 3g, h), confirming a synergistic
245 effect of the co-depletion. We then sought to determine whether the weakening of the
246 microtubule wall occurs along the entire length of the centriole or is more pronounced

247 in the proximal region, where the A-C linker is localized. To investigate this, we stained
248 U2OS control or CCDC77/WDR67-depleted cells with anti-tubulin antibodies to mark
249 the microtubule wall, and the distal marker CP110⁵⁷ (**Fig. 3h**). Analysis of the
250 percentage of structural defects in the proximal, central or distal regions revealed that
251 more than 75% of the centrioles with structural defects exhibited breakage primarily in
252 the proximal region (**Fig. 3i**). These results indicate that the loss of A-C linker
253 components particularly weakened the structural integrity of the proximal region of
254 centrioles.

255 To further characterize this phenotype, we analyzed the ultrastructure of
256 centrioles co-depleted for CCDC77 and WDR67 using resin-embedded electron
257 microscopy. In control cells, centrioles displayed structurally intact and well-connected
258 microtubule triplets with clear densities of the A-C linker (**Fig. 3j**). In contrast, serial
259 section imaging of depleted cells revealed that the A-C linker densities are less visible
260 at the proximal end, although the inner scaffold in the central region remained largely
261 intact (**Fig. 3k**). In some cases, we observed central region centrioles with impaired
262 structures, characterized by loss of MTTs and a deformed inner scaffold (**Fig. 3l**). These
263 findings underscore the critical role of the A-C linker in maintaining the structural
264 integrity and connectivity of MTTs.

265 Based on these results, we explored whether the observed centriole breakage
266 could be an indirect consequence of the destabilization of other structural elements
267 within the centriole. To address this, we examined the effects of depleting each A-C
268 linker component on several other markers: CEP44, a protein located in the pinhead
269 region in the proximal region of centrioles^{21,58,59} (**Extended Data Fig. 3a**); CEP135
270 and SPICE, two proximal proteins²¹ (**Extended Data Fig. 3b, c**); and POC5 for the
271 inner scaffold⁶⁰ (**Extended Data Fig. 3d**). We observed that depletion of A-C linker

272 components resulted in mild impairments to all markers, with CEP44 and CEP135's
273 coverages being shorter and POC5 and SPICE's coverage slightly extended (**Extended**
274 **Data Fig. 3a-h**). To ensure no bias in the coverage quantification since we noticed a
275 slight decrease in centriole size upon CCDC77 depletion (**Extended Data Fig. 3i**), we
276 measured the length for each marker and confirmed our observations (**Extended Data**
277 **Fig. 3j-m**). Overall, these results suggest that the depletion of A-C linker components
278 subtly affects centriole architecture, indicating that the observed breakage is likely
279 directly related to the loss of the A-C linker.

280 Finally, given that centrioles depleted for the A-C linker exhibit breakage
281 predominantly in the proximal region while the inner scaffold remains intact, we
282 investigated the impact of simultaneously removing these structures by co-depleting
283 POC5, a component of the inner scaffold, and WDR67, an A-C linker component.
284 Strikingly, 81% of centrioles were broken upon POC5 and WDR67 co-depletion in
285 contrast to the 25-30% broken centrioles in the single depletion (**Fig. 3m-p**). This result
286 demonstrates the complementary role of both the A-C linker and inner scaffold
287 structures in maintaining MTT connection and centriole architecture integrity.
288 Interestingly, we noticed that some impaired centrioles appeared to be maintained
289 distally (**Fig. 3o, q**, white triangle). Staining with the distal marker C2CD3, which
290 recently was shown to localize as an internal ring inside the centriole^{21,61}, confirmed
291 this observation (**Fig. 3r**). This suggests the existence of a third structural connector
292 located distally at the level of the microtubule doublet, which may contribute to the
293 overall cohesion of the centriole along its proximal-distal axis.

294

295 **Depletion of A-C linker proteins impairs centriole duplication**

296 Since the A-C linker is in the proximal region of centrioles and that centriole
297 duplication arise from that region, we wondered whether the loss of the three A-C linker
298 components could also impact centriole duplication. We first analyzed the number of
299 centrin dots in mitosis as a marker of centriole duplication using immunofluorescence
300 microscopy. We found that 52%, 59% and 54% of cells in mitosis had less than 4
301 centrin dots upon depletion of A-C linker components, indicative of a defect in centriole
302 duplication (**Fig. 4a-i**). To ensure that the putative centriole duplication defects was
303 real and not reflecting solely a reduction of centrin localization itself, we turned to U-
304 ExM and monitored directly procentriole presence using tubulin as a proxy (**Fig. 4j-l**).
305 We found that 24% of CCDC77 siRNA, 16% of WDR67 siRNA and 28% of MIIP
306 siRNA-treated cells displayed 2 procentrioles in contrast to 50% observed in control
307 cells (**Fig. 4j-o**), suggesting that the loss of these proteins impairs centriole duplication.
308 Importantly, we verified that centriole duplication could be restored upon re-expression
309 of an RNAi-resistant version of CCDC77, WDR67 and MIIP, ensuring the specificity
310 of the described phenotype (**Fig. 4j-o**). Finally, we monitored the impact of the
311 depletion on the cell cycle and found that the depletion of the A-C linker components
312 was not impairing the cell cycle (**Extended Data Fig. 4**).

313 Centriole duplication initiates around the torus, a fibrous density composed in
314 part of CEP152 and CEP63, two proteins critical for recruiting proteins that initiate
315 cartwheel and centriole formation^{59,62-64}. Since the A-C linker and the torus shares the
316 same longitudinal position and length²¹ (**Fig. 4p**), we next tested whether CEP63
317 localization would be affected upon CCDC77, WDR67 or MIIP depletion (**Fig. 4q, r**).
318 We found that CEP63 signal was strongly reduced in the three tested conditions (**Fig.**
319 **4q-s**), unveiling an unexpected role for the A-C linker in dictating the recruitment of
320 the CEP63 torus. Interestingly, we observed a correlation between procentriole

321 presence and residual CEP63 signal at the base of the mother centriole (**Fig. 4q**,
322 **asterisk**), indicating the robustness of centriole duplication, as even partial CEP63
323 signal appears sufficient to initiate procentriole formation. Collectively these results
324 suggest that the A-C linker is not only crucial for maintaining the structural integrity of
325 centrioles but also plays a pivotal role in ensuring the proper recruitment and
326 localization of the torus, critical for centriole duplication mechanism.

327

328 **Discussion**

329 The A-C linker, originally referred to as “A-C connections” by Gibbons and
330 Grimstone in their pioneering 1960 study on flagellar structure in *Trichonympha*,
331 *Pseudotrichonympha*, and *Holomastigotes*⁴², has since been widely recognized across
332 various species, ranging from humans to *Paramecium*^{19,23,65–69}, with the exception of
333 *Drosophila*⁷⁰ and the nematode *C. elegans*^{41,71}. Despite these advances, the molecular
334 composition of the A-C linker remained enigmatic. In this manuscript, we elucidate the
335 identity and function of three key proteins—CCDC77, WDR67, and MIIP—as integral
336 components of the A-C linker, revealing the functional significance of the A-C linker
337 in human centrioles. We found that the A-C linker is crucial for maintaining the
338 cohesion between microtubule triplets at the proximal end. We also found that the loss
339 of the A-C linker slightly influences the other centriole’s structures. By simultaneously
340 depleting the inner scaffold and A-C linker, we demonstrated that these two
341 substructures together protect the centriole from fragmentation in an additive manner.
342 Furthermore, we observed that depletion specifically affected only the daughter
343 centriole. This suggests that the incorporation of the A-C linker is stable in mature
344 centrioles, and only daughter centrioles assembled during the previous cycle under A-
345 C linker depletion conditions lack it. This finding indicates that centriole assembly can

346 occur even in the absence of the A-C linker. Finally, we also found that the A-C linker
347 depletion leads to a centriole duplication defect due to the lack of the torus assembly in
348 the newly formed centrioles lacking the A-C linkers. We conclude that the A-C linker
349 has two critical functions at centriole level, microtubule cohesion and torus anchoring.

350

351 Previous study in cryo-electron tomography unraveled the high-resolution structure of
352 the A-C linker in its native state in several species ^{10,15,20,22,50,72,73}. These works
353 demonstrated the complexity of this structural element that is composed of a A-link and
354 a C-link, connected through a trunk ²². The whole structure is 15-20 nm long and is
355 repeated every 8-8.5 nm along the microtubule triplets^{22,50}. The molecular weight of
356 WDR67 is around 124 KDa, 57KDa for CCDC77, and 43KDa for MIIP, for a total of
357 224 KDa. It is therefore possible that these three proteins constitute a large part of the
358 A-C linker although it would be interesting in the future to determine whether other
359 components are part of this sub-structural element. Our DepMap analysis identified
360 other possible candidates, some already well characterized. It will be important later on
361 to focus on these proteins in order to decipher the full molecular composition of the A-
362 C linker. We have identified that CCDC77 associates with microtubules, suggesting
363 that this protein is either involved in A-linker interaction with the A-microtubule or C-
364 linker interaction with the C-microtubule. To determine its position, it will be necessary
365 to develop super-resolution tools to pinpoint precisely which side the protein is on, or
366 to increase the resolution of cryo-ET maps in order to place this protein unambiguously.

367

368 The role of the A-C linker in maintaining cohesion between the A and C microtubules
369 of adjacent triplets has been proposed for some time. Our study confirms this role by
370 identifying its components and demonstrating that the loss of the A-C linker results in

371 breaks in the microtubule triplets at the proximal end. Unexpectedly, we discovered a
372 second function of the A-C linker in torus anchoring. It has been well established that
373 procentriole formation occurs proximally to the mature centriole. This duplication is
374 enabled by the torus located in this region. Our observations revealed a positional
375 correlation between the A-C linker and the torus. Removal of the A-C linker prevents
376 torus recruitment, but intriguingly, partial depletion of the A-C linker is sufficient to
377 recruit a reduced amount of torus and initiate procentriole duplication. These findings
378 suggest that the A-C linker is crucial for defining the torus's position at the proximal
379 side of the mature centriole. Further studies are needed to investigate whether the
380 displacement of A-C linker components affects procentriole duplication and to
381 elucidate the significance of spatial positioning in centriole biogenesis.

382

383

384 **Methods**

385 **Human cell lines and cell culture**

386 Human bone osteosarcoma U2OS cells (ATCC-HTB-96) and retinal pigment epithelial
387 cells hTERT RPE-1 (ATCC-CRL-4000) were grown in Dulbecco's modified Eagle's
388 medium and GlutaMAX, supplemented with 10% fetal calf serum and penicillin and
389 streptomycin (100 µg/ml) at 37 °C in a humidified 5% CO₂ incubator. All cell cultures
390 were regularly tested for mycoplasma contaminations.

391 To generate inducible episomal U2OS: GFP-CCDC77-RR cell line, U2OS cells were
392 transfected using Lipofectamine 3000 (Life Technology). Transfected cells were
393 selected or 6 days using 1 µg/mL puromycin starting day 2 after transfection. Selected
394 cells were amplified and frozen. For further experiments, U2OS:GFP-CCDC77-RR,

395 U2OS:GFP-WDR67-RR and U2OS:GFP-MIIP-RR cell lines were grown in the
396 medium specified above supplemented with 1 µg/mL puromycin.

397

398 **Cloning**

399 GFP-HsCCDC77-RR (RNAi resistant) was cloned in the Gateway compatible vector
400 pEBTet-GFP-GW. An RNAi Resistant CCDC77 DNA sequence was synthesized by
401 Geneart (ThermoFisher scientific) as such: position (636-653 bp) 5'
402 aCACtATCAgAGgGAtAT 3' (modified region corresponding to siRNA from Thermo
403 Fisher s38909) and position (1235-1252 bp) 5' GcCGcATtCTcGAgGTtG 3' (modified
404 region corresponding to siRNA from Thermo Fisher s38908). The following restriction
405 sites were modified: EcoRI and AgeI sites added at the 5' end of the gene (note that the
406 start codon has been removed), EcoRI (position 1127-1132 bp) mutated to 5' GcATTc
407 3', Sall (position 1232-1237 bp) mutated to 5' GTCGcC 3', XbaI and SalI sites were
408 added at the 3' end of the gene just after the stop codon. CCDC77-RR was first
409 subcloned in pENTR using the restriction sites AgeI and XbaI. Subsequently, the final
410 plasmid pEBTet-GFP-CCDC77-RR was obtained through a gateway reaction and
411 sequence verified.

412

413 GFP-WDR67-RR (RNAi resistant) was cloned in the Gateway compatible vector
414 pEBTet-GFP-GW. An RNAi resistant WDR67 DNA-sequence was synthesized by
415 GeneArt (ThermoFisher scientific) as such: position (1411-1431 bp) 5'
416 aGaAAaCTgCTgAGgGTgTTa 3' (modified region corresponding to siRNA from
417 Thermo Fisher s228499) and position (2164-2187 bp) 5'
418 gAgGAcGAgGCcTGGTAtCAaAaa 3' (modified region corresponding to siRNA from
419 Thermo Fisher s228498). The following restriction sites were modified: AgeI site was

420 added at the 5' end of the gene (note that the start codon has been removed), and XbaI
421 site was added at the 3' end of the gene just before the stop codon. XbaI site (position
422 1840-1845 and 2905-2910) mutated to 5' TCcAGg 3'. WDR67-RR was first subcloned
423 in pENTR using the restriction sites AgeI and XbaI. Subsequently, the final plasmid
424 pEBTet-GFP-WDR67-RR was obtained through a gateway reaction and sequence
425 verified.

426

427 GFP-MIIP-RR (RNAi resistant) was cloned in the Gateway compatible vector pEBTet-
428 GFP-GW. An RNAi resistant MIIP DNA-sequence was synthesized by GeneArt
429 (ThermoFisher scientific) as such: position (111-131 bp) 5'-
430 GAaTCgAGtCTaGAgTCtAgc-3' (modified region corresponding to siRNA from
431 Thermo Fisher s226949) and position (607-627 bp) 5'-cAaGAaTTcCGaGAgACtAAc-
432 3' (modified region corresponding to siRNA from Thermo Fisher s34150). The
433 following restriction site was modified: AgeI site (position 881-886) mutated to 5'
434 AtCGaTa 3'. MIIP-RR was first subcloned in pENTR using the restriction sites AgeI
435 and XbaI. Subsequently, the final plasmid pEBTet-GFP-MIIP-RR was obtained
436 through a gateway reaction and sequence verified.

437

438 **siRNA-mediated protein depletion and rescue experiments**

439 U2OS cells were plated onto coverslips in a 6-well plate at 200.000 cells/well prior
440 transfection and RPE1 cells were plated at 100.000 cells/well prior to transfection with
441 the siRNA control and at 150.000 cells/well prior to transfection with les siRNAs
442 against WDR67, CCDC77, and MIIP. Cells were next transfected 6h after with 20 nM
443 silencer select negative control siRNA1 (4390843, Thermo Fisher) or siCCDC77
444 (s38908, sequence sense siCCDC77: 5'-GACGUAUCCUGGAAGUAGAtt-3') or

445 siWDR67 (s228498, sequence sense siWDR67: 5'-
446 GAUGAAGCUUGGUACCAAGAtt-3') or siMIIP (s34150, sequence sense 5'-
447 AGGAGUUUCGGAAACCAAtt-3'), or siPOC5 (AD39Q91, sequence sense 5'-
448 CAACAAAUUCUAGUCAUACUU-3') using Lipofectamine RNAi MAX reagents
449 (Invitrogen). Medium was changed 5-6 hours post-transfection. A second siRNA
450 transfection was done 48h after the first one without changing the medium. Cells were
451 analyzed 96 hours after the first transfection. Ciliogenesis was also performed under
452 those conditions in RPE1 cells.
453 For the rescue experiments with U2OS:GFP-CCDC77-RR, or U2OS:GFP-WDR67-
454 RR, or U2OS:GFP-MIIP-RR stable cell lines, the expression of the RNAi-resistant
455 version of CCDC77 or WDR67 or MIIP was induced constantly for 96 hours using 1
456 µg/mL doxycycline.
457

458 **U-ExM protocol**
459 The following reagents were used in U-ExM⁷⁴ and iU-ExM⁵² experiments:
460 formaldehyde (FA, 36.5-38%, F8775, SIGMA), acrylamide (AA, 40%, A4058,
461 SIGMA), N, N-methylenbisacrylamide (BIS, 2%, M1533, SIGMA), sodium acrylate
462 (SA, 97–99%, 408220, SIGMA and 7446-81-3, AK Scientific), ammonium persulfate
463 (APS, 17874, ThermoFisher), tetramethylethylenediamine (TEMED, 17919,
464 ThermoFisher), nuclease-free water (AM9937, Ambion-ThermoFisher), and poly-D-
465 lysine (A3890401, Gibco). U2OS and RPE-1 cells were expanded using the U-ExM
466 protocol as previously described (Gambarotto et al, 2019, 2021)). Briefly, cells were
467 directly incubated for 3 hours in an anchoring solution containing 2% AA + 1.4% FA
468 diluted in 1X PBS at 37 °C in a humid chamber. Next, the gelation step was performed
469 using the U-ExM monomer solution (10% AA, 19% SA, and 0.1% BIS in 1X PBS)

470 supplemented with 0.5% TEMED and APS by placing cells for 5 minutes on ice
471 followed by 30 minutes at 37 °C incubation, followed by a denaturation step for 1 hours
472 and half at 95 °C in a denaturation buffer (200 mM SDS, 200 mM NaCl, and 50 mM
473 Tris in nuclease-free water, pH 9). Gels were washed from the denaturation buffer twice
474 in ddH₂O at room temperature for 30 minutes or overnight for complete expansion
475 prior to immunostaining. Next, gels were measured with a caliper and the expansion
476 factor was obtained by dividing the size after expansion by 12 mm, which corresponds
477 to the size of the coverslips used for seeding the cells. For the immunolabelling, gels
478 were placed in PBS for 15 minutes to shrunk and then incubated with primary
479 antibodies in PBS-BSA 2% for 2 hours and half at 37°C. Next, 3 washes in PBS-Tween
480 0.1% were performed before to incubate the gels with secondary antibodies in PBS-
481 BSA 2% for 2 hours at 37°C. Gels were washed 3 times in PBS-Tween 0.1% and then
482 incubated 20 min at least in ddH₂O for the final expansion.

483

484 **iU-ExM protocol**

485 U2OS cells were expanded twice using the iU-ExM protocol as previously described
486 ⁵². Briefly, cells were directly incubated in the anchoring solution (2% AA; 1.4% FA
487 in 1X PBS) for 3 hours at 37°C. Then, the gelation was performed using a homemade
488 gelation chamber described in the iU-ExM protocol. The excess of the anchoring
489 solution was removed using Kimwipes and the coverslip was glued on the slide of the
490 gelation chamber. Next, this one was put on a humid chamber on ice and then a
491 monomer solution (MS) (10% AA, 19% SA, 0.1% DHEBA, 0.25% TEMED/APS) was
492 added to fill the space between the coverslip and the lid of the gelation chamber to
493 completely cover the 12-mm coverslip. After 15 minutes on ice, the humid chamber
494 was placed at 37°C for 45 minutes. This step was followed by the denaturation, the

495 coverslip with the gel on top was carefully removed from the gelation chamber and
496 dipped in 2 mL of denaturation buffer (200 mM SDS; 200 mM NaCl; 50 mM Tris-
497 BASE; pH=6.8) in a 6-well plate under shaking until the gel detaches from the
498 coverslip. Next, the gel was transferred in a 1.5 mL Eppendorf tube with 1 mL of fresh
499 denaturation buffer and incubated for 1 hours and half at 85°C. A constant temperature
500 is crucial for good gel consistency. After denaturation, several washes of ddH₂O in a
501 12 cm petri dish were performed before a last wash overnight for a complete expansion.
502 The intermediate antibody staining was done the next day as previously described for
503 the U-ExM protocol after the first expansion step. Following the immunostaining step,
504 the first expanded gel was cut to fit into a 6-well plate which was placed on ice. The
505 piece of gel was incubated 25 minutes under shaking and on ice, with activated neutral
506 gel (10% AA; 0.05% DHEBA; 0.1% APS/TEMED in ddH₂O). Then the gel was put on
507 a microscope slide, and the excess of monomer solution was gently removed using
508 kimwipes and it was covered by a 22 x 22 mm coverslip and incubated in a humid
509 chamber for 1 hour at 37°C. Following this step, the gel embedded in the neutral gel
510 was incubated in the anchoring solution (2% AA/1.4% FA) for 3 hours under shaking
511 at 37°C. In a 6-well plate, the gel was washed in PBS 1X for 30 minutes and then
512 incubated for 25 minutes under shaking and on ice with the 2nd expansion monomer
513 solution (10% AA, 19% SA, 0.1% BIS, 0.1% TEMED/APS) for a +/- 16X expansion
514 factor. Next, the gel was transferred on a microscope slide, then the excess of monomer
515 solution was gently removed with kimwipes and the gel was covered with a 22 x 22
516 mm coverslip for the incubation step 45 minutes at 37°C in a humid chamber. After
517 final polymerization, the entire gel was incubated in 200 nM NaOH solution for 1h
518 under agitation at room temperature in the dark for the dissolution of the first and
519 neutral gels. Following this step, several washes with PBS (20 minutes in total) were

520 performed before the final expansion in ddH₂O, the water of which was changed
521 several times until maximum expansion was reached after an overnight water bath.

522

523 **Imaging**

524 Expanded gels were cut with a razor blade into squares to fit into a 36 mm metallic
525 imaging chamber. The excess of water was carefully removed, and the gel was mounted
526 onto 24 mm coverslips coated with poly-D-lysine (0.1 mg/mL) to prevent drifting.
527 Images were taken with a 63x 1.4 NA oil immersion objective with either an inverted
528 widefield Leica DMi8 Thunder microscope or a confocal Leica TCS SP8 microscope.
529 For the widefield imaging, images were proceeded with the Thunder “Small volume
530 computational clearing” mode and water as “Mounting medium” to generate
531 deconvolved images. 3D stacks were acquired with 0.21 mm z-intervals and a 100 nm
532 x, y pixel size. For the confocal imaging, images were proceeded with a lightning mode
533 at max resolution, adaptative as “Strategy” and water as “Mounting medium” to
534 generate deconvolved images. 3D stacks were acquired with 0.12 mm z-intervals and a
535 35-45 nm x, y pixel size.

536

537 **Antibodies used in this study**

538 For immunostainings, primary antibodies used in this study were as follows: alpha-
539 tubulin (AA345 scFv-F2C, abcd antibodies, 1:250), beta-tubulin (AA344 scFv-S11B,
540 abcd antibodies 1:250), Acetylated tubulin (T7451, Merck Sigma-Aldrich, 1:500 for
541 IF), CCDC77 (26369-1-AP, Proteintech, 1:500 for IF and 1:250 for U-ExM), WDR67
542 (HPA023710, Atlas antibodies, 1:500 for IF and 1:250 for U-ExM), MIIP (20630-1-
543 AP, Proteintech, 1:500 for IF and 1:250 for U-ExM), Centrin (clone 20H5, 04-1624,
544 Merck Millipore, 1:500 for IF), CEP63 (16268-1-AP, Proteintech, 1:500), CEP44

545 (24457-1-AP, Proteintech, 1:250), CP110 (12780-1-AP, Proteintech, 1:500), POC5
546 (A303-341A, Bethyl, 1:250), CEP135 (24428-1-AP, Proteintech, 1:250), C2CD3
547 (HPA038552, Atlas antibodies, 1:250), SPICE (A303-272A, Bethyl, 1:250), CEP164
548 (22227-1-AP, Proteintech, 1:250). Secondary fluorescent antibodies were purchased
549 from Invitrogen ThermoFisher (anti-guinea pig 568 – A11075, anti-guinea pig 488 –
550 A11073, anti-guinea pig Cy5 – Jackson Immuno Research 706-175-148, anti-rabbit
551 488 - A11008, anti-rabbit 568 – A11036, anti-rabbit 647 – A21245, anti-mouse 568 –
552 A11004) and used at 1:800 dilutions for classical immunofluorescence and 1:400 for
553 U-ExM).

554

555 **Immunofluorescence microscopy**

556 U2OS or RPE-1 cells were grown on 12 mm coverslips and fixed at -20°C with cold
557 methanol for 5 min. Fixed cells were then incubated with PBS-BSA 2% for 10 minutes
558 at room temperature and next incubated with the primary antibodies for 1 hour at room
559 temperature. Cells were subsequently washed three times with PBS-Tween 1% for 5
560 minutes and then incubated with the secondary antibodies conjugated with Alexa Fluor-
561 488 or 568. DNA was counterstained with DAPI solution. Samples were mounted in
562 Fluoromount mounting medium (Fluoromount-G, 0100-01, SouthernBiotech) and
563 observed with a widefield Leica DMi8 Thunder microscope. Images were taken with a
564 63x 1.4 NA oil immersion objective using the Thunder “Small volume computational
565 clearing” mode and Fluoromount as “Mounting medium” to generate deconvolved
566 images. 3D stacks were acquired with 0.21 um z-intervals and 100 nm x, y pixel size.

567

568 **EdU Cell proliferation Assay**

569 Cells were treated for 96 hours with siRNAs and then with 10 μ M EdU in complete
570 medium for 30 minutes at 37°C. After incubation, cells were fixed at -20°C with cold
571 methanol for 5 minutes and then washed twice with PBS-BSA 2%. The cells were next
572 permeabilized with 0.5 Triton X-100 in PBS for 20 minutes at room temperature and
573 again washed twice with PBS-BSA 2%. Detection of EdU incorporation into the DNA
574 was performed with the Click-iT® EdU Alexa Fluor® 647 Cell Proliferation Assay Kit
575 (Invitrogen, C10340) according to the manufacturer's instructions. The Click-iT® EdU
576 reaction cocktail (1 \times) was prepared according to the manufacturer's instructions and
577 added to the cell. Samples were incubated for 30 minutes at room temperature in the
578 dark and then washed twice with PBS-BSA 2%. DNA was counterstained with DAPI
579 solution. Samples were mounted in Fluoromount mounting medium and observed with
580 a widefield Leica DMi8 Thunder microscope. Images were taken with a 20x 0.4 NA
581 objective using the Thunder “Small volume computational clearing” mode and
582 Fluoromount as “Mounting medium” to generate deconvolved images.

583

584 **Displacement assay**

585 U2OS cells were plated onto coverslips in a 6-well plate at 300.000 cells/well prior
586 transfection with different plasmid: mcherry-CCDC77 (gift from Juliette Azimzadeh's
587 laboratory), mcherry-WDR67 (gift from Juliette Azimzadeh's laboratory), pEBTet-
588 GFP-WDR67-RR and pEBTet-GFP-MIIP-RR. Cells were transfected the next day with
589 2.5 μ g DNA per well using jetPRIME transfection reagents (Polyplus). Medium
590 supplemented with doxycycline (1 μ g/mL) was changed 5-6 hours post-transfection
591 and cells were analyzed 24 hours post-transfection by classical immunofluorescence
592 microscopy.

593

594 **Quantification**

595 **Data representations and quantifications**

596 Images were analyzed using Fiji⁷⁵. Only raw data were used for intensity
597 measurements, otherwise only deconvolved images were used for representations and
598 quantifications. Measurements of the length, the relative position, and the coverage of
599 centriolar proteins were done as previously described²¹. Briefly, images were resized
600 by decreasing the pixel size by 6 to improve the precision by using the plugin
601 “CropAndResize”. The fluorescent signal distribution of tubulin and the protein of
602 interest were measured using the Fiji line scan and the plugin “PickCentrioleDim” to
603 easily select the start and the end of the fluorescent signal defined as 50% of the peak
604 value at both extremities of the centriole. For all the measures, the tubulin was defined
605 as the reference protein, and its starting coordinate was shifted and set to 0. The same
606 shift was applied to the protein of interest to keep the correct distances between the 2
607 proteins. The gel expansion factor was applied to all measures before plotting them
608 using GraphPad Prism10. Graphs of the relative average position of the protein of
609 interest according to the tubulin signal were done using the plugin “CentrioleGraph”.
610 For the quantification of the broken phenotype, the number of cells with broken
611 centrioles was manually quantified under the microscope when both or one of the two
612 centrioles per cell were deformed/abnormal or with missing part of the centriole or only
613 blades of microtubules.

614

615 **Expansion factor**

616 For each experiment, the expanded gel is precisely measured with a caliper and the
617 calculated expansion factor is applied in every quantification. Values presented in

618 graphs and scale bars always correspond to “real” values after the application of the
619 expansion factor.

620

621 **siRNA**

622 siRNA efficiency was evaluated manually at the level of the centriole from cells in
623 either G1 (two centrioles) or S/G (four centrioles) phase. The intensity was increased
624 to the maximum, and the signal was monitored. For the measurement of the protein of
625 interest intensity from regular IF or U-ExM, a pixel square with always the same size
626 in between IF measures or in between U-ExM measures was positioned around the
627 centrosome/centriole or in the vicinity to evaluate the background and mean intensity
628 was measured in both regions. Background value was subtracted, and data were plotted
629 as mean intensity values. Data were classified into three categories: signal on the two
630 mature centrioles when all the centrioles were positive for the protein of interest, only
631 one of the two mature centrioles was positive, and completely depleted when the protein
632 of interest was absent from all the mature centrioles.

633

634 **Statistical analysis**

635 Statistical analyses were performed using Excel or Prism10 (GraphPad version 10.2.3
636 (403), April 21, 2024) and all data are expressed as the mean (average) +/- standard
637 deviation (SD). The comparison of the two groups was performed using an unpaired
638 two-sided Student’s t-test or its non-parametric correspondent, the Mann–Whitney test,
639 if normality was not granted because rejected by the Pearson test. The comparisons of
640 more than two groups were made using one-way ANOVAs for one interaction factor
641 or two-way ANOVAs for several interaction factors followed by multiple comparison
642 tests as indicated in the corresponding Data files to identify all the significant group

643 differences. N indicates independent biological replicates from distinct samples. Every
644 experiment was performed at least three times independently on different biological
645 samples unless specified. No statistical method was used to estimate the sample size.
646 Data are all represented as scatter dot plots with the centerline as mean, except for some
647 percentage quantifications, which are represented as histogram bars. The graphs with
648 error bars indicate SD (+/-) and the significance level is denoted as usual (*P < 0.05,
649 **P < 0.01, ***P < 0.001, ****P < 0.0001).

650

651 **Data and software availability**

652 All data are available upon request. The data that support the findings of this study are
653 available as "source data".

654

655 **Author Contributions**

656 V.H. and P. G. supervised the present work and wrote the manuscript. L.B performed
657 all the experiments and their analysis with initial help from M.H.L. and S. B.

658

659 **Acknowledgments**

660 We thank Juliette Azimzadeh for initial sharing of reagents (plasmid mcherry-CCDC77
661 and mcherry-WDR67). This work was supported the Swiss State Secretariat for
662 Education, Research and Innovation (SERI) under contract number MB22.00075. This
663 work is supported by the Swiss National Foundation (SNSF) PP00P3_187198 (PG) and
664 310030_205087 (PG and VH) and by the European Research Council (ERC) ERC StG
665 715289 ACCENT (PG).

666

667 **References**

668 1. a Nigg, E. & Raff, J. W. Centrioles, centrosomes, and cilia in health and
669 disease. *Cell* **139**, 663–678 (2009).

670 2. Doxsey, S. Re-evaluating centrosome function. *Nat. Rev. Mol. Cell Biol.* **2**,
671 688–698 (2001).

672 3. Bettencourt-Dias, M. & Glover, D. M. Centrosome biogenesis and function:
673 centrosomics brings new understanding. *Nat. Rev. Mol. Cell Biol.* **8**, 451–463
674 (2007).

675 4. Gönczy, P. Centrosomes and cancer: revisiting a long-standing relationship.
676 (2015). doi:10.1038/nrc3995

677 5. Bornens, M. Centrosome Cycle. *Life Sci.* **521**, 1–6 (2002).

678 6. Snell, W. J., Pan, J. & Wang, Q. Cilia and Flagella Revealed: From Flagellar
679 Assembly in *Chlamydomonas* to Human Obesity Disorders. *Cell*
680 **117**, 693–697 (2004).

681 7. Marshall, W. F. & Nonaka, S. Cilia: Tuning in to the Cell’s Antenna. *Curr.*
682 *Biol.* **16**, R604–R614 (2006).

683 8. Malicki, J. J. & Johnson, C. A. The Cilium: Cellular Antenna and Central
684 Processing Unit. *Trends Cell Biol.* **27**, 126–140 (2017).

685 9. Hilgendorf, K. I., Myers, B. R. & Reiter, J. F. Emerging mechanistic
686 understanding of cilia function in cellular signalling. *Nat. Rev. Mol. Cell Biol.*
687 **25**, 555–573 (2024).

688 10. LeGuennec, M., Klena, N., Aeschlimann, G., Hamel, V. & Guichard, P.
689 Overview of the centriole architecture. *Curr. Opin. Struct. Biol.* **66**, 58–65
690 (2021).

691 11. Winey, M. & O’Toole, E. Centriole structure. *Philos. Trans. R. Soc. Lond. B.*
692 *Biol. Sci.* **369**, (2014).

693 12. Inglis, P. N., Boroevich, K. A. & Leroux, M. R. Piecing together a ciliome.
694 *Trends Genet.* **22**, 491–500 (2006).

695 13. Guennec, M. Le *et al.* A helical inner scaffold provides a structural basis for
696 centriole cohesion. *Sci. Adv.* **6**, (2020).

697 14. Steib, E. *et al.* Wdr90 is a centriolar microtubule wall protein important for
698 centriole architecture integrity. *Elife* **9**, 1–28 (2020).

699 15. Ruehle, M. D., Li, S., Agard, D. A. & Pearson, C. G. Poc1 bridges basal body
700 inner junctions to promote triplet microtubule integrity and connections. *J. Cell
701 Biol.* **223**, (2024).

702 16. Kitagawa, D. *et al.* Structural Basis of the 9-Fold Symmetry of Centrioles. *Cell*
703 **144**, 1–12 (2011).

704 17. Breugel, M. Van *et al.* Structures of SAS-6 suggest its organization in
705 centrioles. *Science (80-.).* **331**, 1196–1199 (2011).

706 18. Hilbert, M. *et al.* SAS-6 engineering reveals interdependence between
707 cartwheel and microtubules in determining centriole architecture. **18**, (2016).

708 19. Hirono, M. Cartwheel assembly. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **369**,
709 (2014).

710 20. Klena, N. *et al.* Architecture of the centriole cartwheel-containing region
711 revealed by cryo-electron tomography. *EMBO J.* **39**, 1–17 (2020).

712 21. Laporte, M. H. *et al.* Time-series reconstruction of the molecular architecture
713 of human centriole assembly. *Cell* **187**, 2158-2174.e19 (2024).

714 22. Li, S., Fernandez, J.-J., Marshall, W. F. & Agard, D. A. Electron cryo-
715 tomography provides insight into procentriole architecture and assembly
716 mechanism. *Elife* **8**, 1–25 (2019).

717 23. Meehl, J. B., Bayless, B. A., Giddings, T. H., Pearson, C. G. & Winey, M.

718 Tetrahymena Poc1 ensures proper intertriplet microtubule linkages to maintain
719 basal body integrity. *Mol. Biol. Cell* **27**, 2394–2403 (2016).

720 24. Cizmecioglu, O. *et al.* Cep152 acts as a scaffold for recruitment of Plk4 and
721 CPAP to the centrosome. *J. Cell Biol.* **191**, 731–739 (2010).

722 25. Wei, Z. *et al.* Requirement of the Cep57-Cep63 Interaction for Proper Cep152
723 Recruitment and Centriole Duplication. *Mol. Cell. Biol.* **40**, (2020).

724 26. Kim, T.-S. *et al.* Molecular architecture of a cylindrical self-assembly at human
725 centrosomes. *Nat. Commun.* **10**, 1151 (2019).

726 27. Arquint, C. & Nigg, E. A. The PLK4–STIL–SAS-6 module at the core of
727 centriole duplication. *Biochem. Soc. Trans.* **44**, 1253–1263 (2016).

728 28. Dzhindzhev, N. S. *et al.* Plk4 phosphorylates Ana2 to trigger Sas6 recruitment
729 and procentriole formation. *Curr. Biol.* **24**, 2526–2532 (2014).

730 29. Ohta, M. *et al.* Direct interaction of Plk4 with STIL ensures formation of a
731 single procentriole per parental centriole. *Nat. Commun.* **5**, 5267 (2014).

732 30. Arquint, C. *et al.* STIL binding to Polo-box 3 of PLK4 regulates centriole
733 duplication. *Elife* **4**, (2015).

734 31. Nakazawa, Y., Hiraki, M., Kamiya, R. & Hirono, M. SAS-6 is a cartwheel
735 protein that establishes the 9-fold symmetry of the centriole. *Curr. Biol.* **17**,
736 2169–2174 (2007).

737 32. Sullenberger, C., Vasquez-Limeta, A., Kong, D. & Loncarek, J. With Age
738 Comes Maturity: Biochemical and Structural Transformation of a Human
739 Centriole in the Making. *Cells* **9**, 1429 (2020).

740 33. Nigg, E. A. & Holland, A. J. Once and only once: mechanisms of centriole
741 duplication and their deregulation in disease. *Nat. Rev. Mol. Cell Biol.* **19**, 297–
742 312 (2018).

743 34. Strnad, P. *et al.* Regulated HsSAS-6 levels ensure formation of a single
744 procentriole per centriole during the centrosome duplication cycle. *Dev. Cell*
745 **13**, 203–13 (2007).

746 35. Hiraki, M., Nakazawa, Y., Kamiya, R. & Hirono, M. Bld10p constitutes the
747 cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. *Curr.*
748 *Biol.* **17**, 1778–1783 (2007).

749 36. Gartenmann, L. *et al.* A combined 3D-SIM/SMLM approach allows centriole
750 proteins to be localized with a precision of ~4–5 nm. *Curr. Biol.* **27**, R1054–
751 R1055 (2017).

752 37. Sonnen, K. F., Schermelleh, L., Leonhardt, H. & Nigg, E. A. 3D-structured
753 illumination microscopy provides novel insight into architecture of human
754 centrosomes. *Biol. Open* **1**, 965–976 (2012).

755 38. Yang, T. T. *et al.* Super-resolution architecture of mammalian centriole distal
756 appendages reveals distinct blade and matrix functional components. *Nat.*
757 *Commun.* **9**, 1–11 (2018).

758 39. Carvalho-Santos, Z. *et al.* BLD10/CEP135 is a microtubule-associated protein
759 that controls the formation of the flagellum central microtubule pair. *Dev. Cell*
760 **23**, 412–24 (2012).

761 40. Rodrigues-Martins, A. *et al.* DSAS-6 organizes a tube-like centriole precursor,
762 and its absence suggests modularity in centriole assembly. *Curr. Biol.* **17**,
763 1465–72 (2007).

764 41. Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Müller-Reichert, T.
765 Centriole assembly in *Caenorhabditis elegans*. *Nature* **444**, 619–623 (2006).

766 42. Gibbons, I. R. & Grimstone, a V. On flagellar structure in certain flagellates. *J.*
767 *Biophys. Biochem. Cytol.* **7**, 697–716 (1960).

768 43. Pearson, C. G., Osborn, D. P. S., Giddings, T. H., Beales, P. L. & Winey, M.
769 Basal body stability and ciliogenesis requires the conserved component Poc1.
770 *J. Cell Biol.* **187**, 905–920 (2009).
771 44. Gambarotto, D. *et al.* Imaging cellular ultrastructures using expansion
772 microscopy (U-ExM). *Nat. Methods* **16**, (2019).
773 45. Senatore, E. *et al.* The TBC1D31/praja2 complex controls primary ciliogenesis
774 through PKA-directed OFD1 ubiquitylation. *EMBO J.* **40**, (2021).
775 46. DepMap, B. DepMap 24Q2 Public. (2024).
776 doi:10.25452/figshare.plus.25880521.v1
777 47. Tsherniak, A. *et al.* Defining a Cancer Dependency Map. *Cell* **170**, 564-
778 576.e16 (2017).
779 48. Song, S. W. *et al.* IIp45, an insulin-like growth factor binding protein 2
780 (IGFBP-2) binding protein, antagonizes IGFBP-2 stimulation of glioma cell
781 invasion. *Proc. Natl. Acad. Sci.* **100**, 13970–13975 (2003).
782 49. Jakobsen, L. *et al.* Novel asymmetrically localizing components of human
783 centrosomes identified by complementary proteomics methods. *EMBO J.* **30**,
784 1520–1535 (2011).
785 50. Guichard, P. *et al.* Native architecture of the centriole proximal region reveals
786 features underlying its 9-fold radial symmetry. *Curr. Biol.* **23**, 1620–8 (2013).
787 51. Gambarotto, D., Hamel, V. & Guichard, P. Ultrastructure expansion
788 microscopy (U-ExM). *Methods Cell Biol.* (2020).
789 doi:10.1016/bs.mcb.2020.05.006
790 52. Louvel, V. *et al.* iU-ExM: nanoscopy of organelles and tissues with iterative
791 ultrastructure expansion microscopy. *Nat. Commun.* **14**, 7893 (2023).
792 53. Graser, S. *et al.* Cep164, a novel centriole appendage protein required for

793 primary cilium formation. *J. Cell Biol.* **179**, 321–330 (2007).

794 54. Borgne, P. Le *et al.* The evolutionary conserved proteins CEP90, FOPNL, and
795 OFD1 recruit centriolar distal appendage proteins to initiate their assembly.

796 *PLOS Biol.* **20**, e3001782 (2022).

797 55. Quarantotti, V. *et al.* Centriolar satellites are acentriolar assemblies of
798 centrosomal proteins. *EMBO J.* **38**, (2019).

799 56. Gheiratmand, L. *et al.* Spatial and proteomic profiling reveals centrosome-
800 independent features of centriolar satellites. *EMBO J.* **38**, (2019).

801 57. Spektor, A., Tsang, W. Y., Khoo, D. & Dynlacht, B. D. Cep97 and CP110
802 Suppress a Cilia Assembly Program. *Cell* **130**, 678–690 (2007).

803 58. Atorino, E. S., Hata, S., Funaya, C., Neuner, A. & Schiebel, E. CEP44 ensures
804 the formation of bona fide centriole wall, a requirement for the centriole-to-
805 centrosome conversion. *Nat. Commun.* **11**, 903 (2020).

806 59. Sullenberger, C., Kong, D., Avazpour, P., Luvsanjav, D. & Loncarek, J.
807 Centrosomal organization of Cep152 provides flexibility in Plk4 and
808 procentriole positioning. *J. Cell Biol.* **222**, (2023).

809 60. Le Guennec, M. *et al.* A helical inner scaffold provides a structural basis for
810 centriole cohesion. *Sci. Adv.* **6**, eaaz4137 (2020).

811 61. Gaudin, N. *et al.* Evolutionary conservation of centriole rotational asymmetry
812 in the human centrosome. *Elife* **11**, (2022).

813 62. Keller, D. *et al.* Mechanisms of HsSAS-6 assembly promoting centriole
814 formation in human cells. *J. Cell Biol.* **204**, 697–712 (2014).

815 63. Sir, J.-H. *et al.* A primary microcephaly protein complex forms a ring around
816 parental centrioles. *Nat. Genet.* **43**, 1147–1153 (2011).

817 64. Brown, N. J., Marjanović, M., Lüders, J., Stracker, T. H. & Costanzo, V.

818 Cep63 and Cep152 Cooperate to Ensure Centriole Duplication. *PLoS One* **8**,
819 e69986 (2013).

820 65. Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome
821 organization and centriole architecture: their sensitivity to divalent cations. *J.*
822 *Struct. Biol.* **108**, 107–28 (1992).

823 66. Anderson, R. G. The three-dimensional structure of the basal body from the
824 rhesus monkey oviduct. *J. Cell Biol.* **54**, 246–265 (1972).

825 67. Albrecht-Buehler, G. The iris diaphragm model of centriole and basal body
826 formation. *Cell Motil. Cytoskeleton* **17**, 197–213 (1990).

827 68. Wang, J. T. & Stearns, T. The ABCs of Centriole Architecture: The Form and
828 Function of Triplet Microtubules. *Cold Spring Harb. Symp. Quant. Biol.*
829 **LXXXII**, 034496 (2018).

830 69. Cavalier-Smith, T. basal body and flagellar development during the vegetative
831 cell cycle and the sexual cycle of Chlamydomonas reinhardii. *J. Cell Sci.* **16**,
832 529 (1974).

833 70. Greenan, G. A., Keszthelyi, B., Vale, R. D. & Agard, D. A. Insights into
834 centriole geometry revealed by cryotomography of doublet and triplet
835 centrioles. *Elife* **7**, 1–18 (2018).

836 71. Tollervey, F., Rios, M. U., Zagoriy, E., Woodruff, J. B. & Mahamid, J. Native
837 molecular architectures of centrosomes in *C. elegans* embryos. *bioRxiv* (2024).
838 doi:10.1101/2024.04.03.587742

839 72. Nazarov, S. *et al.* Novel features of centriole polarity and cartwheel stacking
840 revealed by cryo-tomography. *EMBO J.* **39**, (2020).

841 73. Li, S., Fernandez, J.-J., Marshall, W. F. & Agard, D. a. Three-dimensional
842 structure of basal body triplet revealed by electron cryo-tomography. *EMBO J.*

843 1–11 (2011). doi:10.1038/emboj.2011.460

844 74. Gambarotto, D. *et al.* Imaging cellular ultrastructures using expansion

845 microscopy (U-ExM). *Nat. Methods* 2018 161 **16**, 71–74 (2018).

846 75. Schindelin, J. *et al.* Fiji: An open-source platform for biological-image

847 analysis. *Nat. Methods* **9**, 676–682 (2012).

848

849

850 **Figure legends**

851 **Figure 1. MIIP as a novel A-C linker protein**

852 **(a)** Common genes out of the top 100 genes plotted according to Pearson correlations
853 of the WDR67 gene with the CCDC77 gene from the database Depmap portal
854 (<https://depmap.org/portal/>). **(b-c)** Widefield images of U2OS cells in interphase (b) or
855 mitosis (c) stained for DNA with DAPI (grey), Centrin (magenta), and MIIP (cyan).
856 Scale bars = 5 μ m. Dashed line squares correspond to insets. **(d-f)** Confocal images of
857 expanded U2OS centrioles in longitudinal view stained for α/β -tubulin (magenta) and
858 MIIP (cyan) (d), WDR67 (cyan) (e) or CCDC77 (cyan) (f). Scale bars = 100 nm. The
859 average longitudinal and radial localization of MIIP (d) or WDR67 (e) or CCDC77 (f)
860 are presented on the right of the corresponding image. **(g)** Model of a human centriole
861 on the left displaying MTTs (gray) and the A-C linker structure (cyan) in the proximal
862 part of the centriole. The relative radial positions of each protein of interest compared
863 to tubulin are depicted next to the model. Error bars denote SD. **(h)** Confocal images
864 of expanded U2OS procentrioles during assembly until the mature centriole stage in
865 longitudinal view stained for α/β tubulin (magenta) and MIIP (cyan). Scale bar = 100
866 nm. **(i)** Centriole length, based on the tubulin signal, with (+ MIIP) and without (- MIIP)
867 MIIP. The cyan line represents the average tubulin length when the MIIP signal appears
868 (\approx 115 nm). **(j)** Confocal images of expanded U2OS centrioles from top view stained
869 for α/β tubulin (magenta) and MIIP (cyan). Scale bar = 100 nm. MIIP signal is located
870 between each MTT visualized thanks to tubulin staining. The fluorescence intensity
871 profile along two successive MTTs demonstrating the precise position of MIIP is shown
872 below the images. SDs are symbolized by the smaller dashed lines. The yellow arrow
873 indicates the plot profile measurement of the MIIP signal between two successive
874 MTTs. **(k)** Widefield images with Huygens deconvolution of expanded U2OS
875 centrioles using iU-ExM from top view stained for α/β tubulin (magenta) and MIIP
876 (cyan – top panel), WDR67 (cyan – middle panel) or CCDC77 (cyan – bottom panel).
877 Scale bars = 100 nm. The nine MTTs are clearly visible with the tubulin signal.
878 Fluorescence intensity profile of each protein (cyan) of interest through the walls
879 (tubulin signal) of an entire centriole using the plugin “Polar Transform” from Fiji are
880 presented next to the corresponding images. **(l)** Model of a human centriole in top view
881 centered on the A-C linker region highlighted in cyan where CCDC77, WDR67 and
882 MIIP localize.

883 The detailed statistics of all the graphs shown in the figure are included in the Source
884 Data file.
885

886 **Figure 2. Co-dependency of CCDC77, WDR67 and MIIP complex**

887 (a-c) Confocal images of expanded U2OS centrioles in longitudinal view treated with
888 siCTRL, siCCDC77, siWDR67, and siMIIP stained for α/β tubulin (magenta) and
889 CCDC77 (a – cyan), WDR67 (b – cyan) or MIIP (c – cyan). Scale bars = 200 nm. White
890 arrows point out the depletion of the protein targeted by each siRNA. (d, f, h)
891 Normalized relative intensity of CCDC77 (d), WDR67 (f) or MIIP (h) in the different
892 siRNA conditions. (e, g, i) Percentage of cells showing fluorescent signal for CCDC77
893 (e), WDR67 (g) or MIIP (i) in both mature centrioles (grey), only one (yellow) or none
894 (orange) in the indicated siRNA (j-l) Widefield images of U2OS expressing mcherry-
895 CCDC77 (j), GFP-WDR67 (k) or GFP-MIIP (l) were stained for DAPI (cyan) and α/β
896 tubulin (grey). Scale bars = 10 μ m. Percentage of cells showing CCDC77 (j), WDR67
897 (k) or MIIP (l) within the cytoplasm (C) or associated to microtubule (M) are presented
898 next to the corresponding images. (m-o) Widefield images of U2OS cells co-expressing
899 mcherry-CCDC77 (magenta) with GFP-WDR67 (green) (m), mcherry-CCDC77
900 (magenta) with GFP-MIIP (green) (n), mcherry-WDR67 (magenta) with MIIP-GFP
901 (green) (o) stained for DAPI (cyan). Scale bars = 10 μ m. Percentage of cells showing
902 WDR67 (m), MIIP (n) or both (o) withing the cytoplasm (C) or associated to
903 microtubule (M) are presented next to the corresponding images. (p) Widefield images
904 of U2OS co-expressing mcherry-CCDC77 (magenta) with GFP-WDR67 (green) and
905 GFP-MIIP (green) stained for DAPI (cyan) and WDR67 (yellow – top part) or MIIP
906 (yellow – bottom part). Scale bars = 10 μ m. (q) Percentage of cells showing WDR67
907 (left part) or MIIP (right part) within cytoplasm (C) or associated to microtubule (M).
908 (r) Schematic view of the interactions between CCDC77, WDR67 and MIIP. MT
909 stands for microtubule.

910 The detailed statistics of all the graphs shown in the figure are included in the Source
911 Data file.

912

913 **Figure 3. Depletion of A-C linker proteins leads to broken centriole**

914 (a-c) Widefield images of expanded U2OS stably expressing GFP alone or RNAi
915 resistant GFP-CCDC77-RR (a), GFP-WDR67-RR (b) or GFP-MIIP-RR (c) stained for
916 α/β tubulin (magenta) and the protein of interest (cyan) in different siRNA conditions.
917 White arrows point to broken centrioles. Scale bars = 200 nm. (d-f) Percentage of cells
918 with broken centrioles in the indicated siRNA conditions. (g) Percentage of cells with
919 broken centrioles in the indicated siRNA conditions. (h) Confocal images of expanded
920 U2OS cells treated with siCTRL or siCCDC77/siWDR67 and stained for α/β tubulin
921 (magenta) or CP110 (yellow). White arrows point to broken centriole at the proximal
922 region. Scale bar = 200 nm. (i) Percentage of cells with broken centrioles in different
923 centriolar regions (proximal breakage or deformation, distal breakage or deformation
924 or totally broken with only blades of microtubules or without any centriole shape). (j)
925 Transmission electron microscopy images of U2OS centrioles treated with siCTRL.
926 Scale bar = 200 nm. Blue arrow points to the A-C linker structure. (k) Transmission
927 electron microscopy images of a U2OS centriole treated with siCCDC77/siWDR67
928 across the distal region to the proximal region. Scale bars = 200 nm. Yellow arrow
929 points to the inner scaffold structure at the distal region. Red star points to a broken

930 centriole at the proximal region. Human centriole model below indicates proximal
931 breakage. (l) Transmission electron microscopy images of U2OS centrioles treated with
932 siCTRL or siCCDC77/siWDR67. Yellow arrow points to the intact inner scaffold
933 structure. Scale bars = 200 nm. Schematic views of the intact inner scaffold in siCTRL
934 condition or the deformed inner scaffold/loss of MTTs in siCCDC77/siWDR67 are
935 presented below to the corresponding images. (m-o) Widefield images of expanded
936 U2OS centrioles treated with siCTRL (m), siPOC5 (n) or siWDR67/siPOC5 (o) stained
937 for α/β tubulin (magenta) and POC5 (green) or WDR67 (cyan). Scale bars = 200 nm.
938 White triangles point to broken centrioles with a preserved distal attachment; white
939 stars point to pieces of broken centrioles; white arrowheads point to blades of
940 microtubules from broken centrioles. (p) Percentage of cells with broken centrioles in
941 the indicated siRNA conditions. (q) Percentage of cells with different types of broken
942 centrioles with distal attachment or pieces of broken centrioles or blades of
943 microtubules in the indicated siRNA conditions. (r) Widefield images of expanded
944 U2OS centrioles treated with siCTRL or siWDR67/siPOC5 and stained for α/β tubulin
945 (magenta) and C2CD3 (green). Scale bars = 200 nm. White triangles point to broken
946 centrioles with a preserved distal attachment. Human centriole model below indicates
947 a broken centriole with a distal attachment.

948 The detailed statistics of all the graphs shown in the figure are included in the Source
949 Data file.

950

951 **Figure 4. Depletion of A-C linker proteins impairs centriole duplication**

952 (a-f) Widefield images of U2OS cells in mitosis stained with DAPI (grey), Centrin
953 (magenta), and CCDC77 (a, d – cyan), WDR67 (b, e – cyan) or MIIP (c, f – cyan) in
954 different siRNA conditions. Scale bars = 5 μ m. Dashed line squares correspond to
955 insets. (g-i) Percentage of cell in mitosis with 4 or less than 4 centrioles (centrin dots)
956 in different siRNA conditions. (j-l) Widefield images of expanded U2OS stably
957 expressing GFP alone or RNAi resistant GFP-CCDC77-RR (j), GFP-WDR67-RR (k)
958 or GFP-MIIP-RR (l) stained for α/β tubulin (magenta) and the protein of interest (cyan)
959 in different siRNA conditions. Centrioles are in G2/S phase in longitudinal view. Scale
960 bars = 200 nm. White arrows point to missing procentrioles. M stands for mature
961 centriole and P stands for procentriole. (m-o) Percentage of cells with two
962 procentrioles, only one or without any procentriole in the indicated siRNA conditions.
963 (p) Model of a human mature centriole displaying the structural elements of the
964 centriole and pointing to the A-C linker structure (cyan) and the torus (yellow) around
965 the proximal region of the centriole. (q) Widefield images of expanded U2OS
966 centrioles in G2/S phase stained for CEP63 (yellow) and α/β tubulin (magenta) in the
967 indicated siRNA conditions. Scale bars = 200 nm. White arrows point to missing
968 procentrioles. M stands for mature centriole and P stands for procentriole. Asterisk
969 points to the remaining CEP63 signal at the base of the mother centriole. (r) Percentage
970 of cells showing fluorescent signal for CEP63 in both mature centrioles (grey), only
971 one (yellow) or none (orange) in the indicated siRNA conditions. (s) Coverage of
972 CEP63 protein, expressed as a percentage of the tubulin length in the indicated siRNA
973 conditions.

974 The detailed statistics of all the graphs shown in the figure are included in the Source
975 Data file.

976

977 **Figure 5. Functions of the A-C linker**

978
979 Schematic representation of a human centriole highlighting the distal complex, inner
980 scaffold (IS), A-C linker and torus structural elements. This model underpins the
981 functional roles of the A-C linker, made in parts of the proteins CCDC77, WDR67 and
982 MIIP, in regulating centriole duplication through the torus localization, and maintaining
983 centriole integrity.
984

985 **Extended data figures legends**

986 **Extended Data Figure 1. Depletion efficiency and microtubule binding**

987 **(a-c)** Widefield images of expanded U2OS centrioles in longitudinal view stained for
988 α/β tubulin (magenta) and CCDC77+CEP164 (cyan) (a), WDR67 + CEP164 (cyan) (b)
989 or MIIP+ CEP164 (c) in the following conditions: siCTRL (a-c) and siCCDC77 (a),
990 siWDR67 (b) or siMIIP (c). P and D stand for proximal and distal part of the centriole
991 respectively. Note that CEP164 serves as a marker for mature centriole (yellow arrow).
992 White arrows point to the signal depletion of the protein of interest for each siRNA
993 treatment. Scale bars = 200 nm. **(d)** Percentage of cells depleted for CCDC77 in
994 siCCDC77, WDR67 in siWDR67, and MIIP in siMIIP on the mother centriole, or the
995 daughter centriole, or both depleted. **(e-g)** Widefield images of U2OS cells transfected
996 with mcherry-WDR67 (e) or with mcherry-CCDC77 and GFP-MIIP (f) or mcherry-
997 CCDC77 and GFP-WDR67 (g) for 24h with doxycycline induction and then after
998 methanol fixation stained for DAPI (cyan) and α/β tubulin (white). Scale bars = 10 μ m.
999 **(h)** Widefield images of U2OS cells expressing GFP-WDR67 (green) and GFP-MIIP
1000 (green) stained for DAPI (cyan), α/β tubulin (white) and WDR67 (yellow – top panel)
1001 or MIIP (yellow – bottom panel). Scale bars = 10 μ m. The detailed statistics of all the
1002 graphs shown in the figure are included in the Source Data file.
1003

1004 **Extended Data Figure 2. MIIP depletion does not affect ciliogenesis**

1005 **(a-d)** Widefield images of RPE1 cells ciliated stained for acetylated tubulin (magenta),
1006 DAPI (grey) and WDR67 (cyan – a, c), CCDC77 (cyan – b) or MIIP (cyan – d). Scale
1007 bars = 10 μ m. Dashed-line squares correspond to insets. **(e)** Percentage of RPE1 ciliated
1008 cells in the indicated siRNA conditions. **(f)** Widefield images of expanded ciliated
1009 RPE1 cells stained for α/β tubulin (magenta). Scale bars = 200 nm. **(g)** Percentage of
1010 normal or short cilia in the indicated siRNA conditions. **(h)** Widefield images of
1011 expanded ciliated RPE1 cells stained for α/β tubulin (magenta) and CCDC77 (cyan) in
1012 different siRNA conditions. Scale bars = 200 nm. Dashed line squares correspond to
1013 insets. Yellow squares indicate the distal localization of CCDC77 used for
1014 quantification shown in (i). **(i)** Normalized relative intensity of distal CCDC77 signal
1015 in the indicated siRNA conditions in RPE1 cells. **(j)** Widefield images of expanded
1016 U2OS centrioles in longitudinal view stained for α/β tubulin (magenta) and CCDC77
1017 (cyan) in different siRNA conditions. Scale bars = 200 nm. Yellow squares indicate the
1018 distal localization of CCDC77 used for quantification shown in (k). **(k)** Normalized
1019 relative intensity of distal CCDC77 signal in the indicated siRNA conditions in U2OS
1020 cells.
1021 The detailed statistics of all the graphs shown in the figure are included in the Source
1022 Data file.
1023

1024 **Extended Data Figure 3. Impact of A-C linker depletion on other centriolar
1025 elements.**

1026

1027 **(a-d)** Widefield images of expanded U2OS centrioles in longitudinal view stained for
1028 α/β tubulin (magenta) and CEP44 (a – green), CEP135 (b – green), SPICE (c – cyan)
1029 or POC5 (d – green) in the indicated siRNA conditions. Scale bars = 200 nm. Model of
1030 a human mature centriole on the left panel displaying the structural element of interest
1031 next to the corresponding images. **(e-h)** Coverage of CEP44 (e), CEP135 (f), SPICE
1032 protein (g), or POC5 protein (h), expressed as a percentage of the tubulin length in the
1033 indicated siRNA conditions. Note that CEP44 and POC5 quantification were performed
1034 on daughter centriole only while CEP135 and SPICE on both mother and daughter ones.
1035 **(i)** Tubulin length of mature centrioles (mother and daughter) in the indicated siRNA
1036 conditions. **(j-m)** Proteins length of CEP44 (j), CEP135 (k), SPICE (l) or POC5 (m) in
1037 the indicated siRNA conditions. Note that CEP44 and POC5 quantification were
1038 performed on daughter centriole only while CEP135 and SPICE on both mother and
1039 daughter ones.

1040 The detailed statistics of all the graphs shown in the figure are included in the Source
1041 Data file.

1042

1043 **Extended Data Figure 4. Cell cycle is not impaired upon A-C linker components
1044 depletion.**

1045

1046 **(a-d)** Widefield images of U2OS cells treated with siCTRL (a), siCCDC77 (b),
1047 siWDR67 (c) or siMIIP (d) incubated with click-EdU and stained with DAPI (blue) and
1048 Edu Alexa-Fluor 647 (yellow). Scale bars = 50 μ m. **(e)** Percentage of relative EdU-
1049 positive cells in the indicated siRNA conditions.

1050 The detailed statistics of all the graphs shown in the figure are included in the Source
1051 Data file.

1052

1053

1054

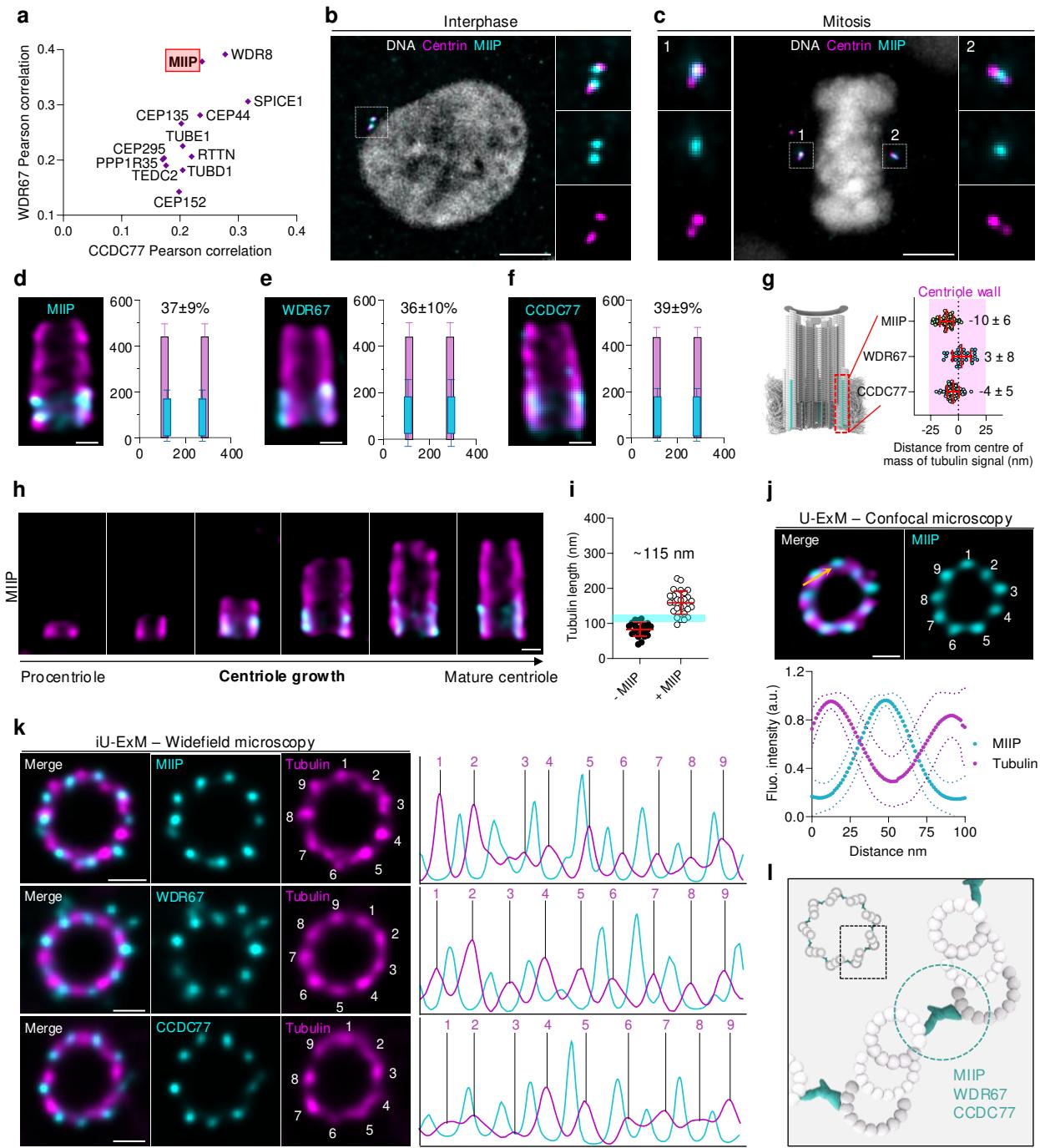


Figure1

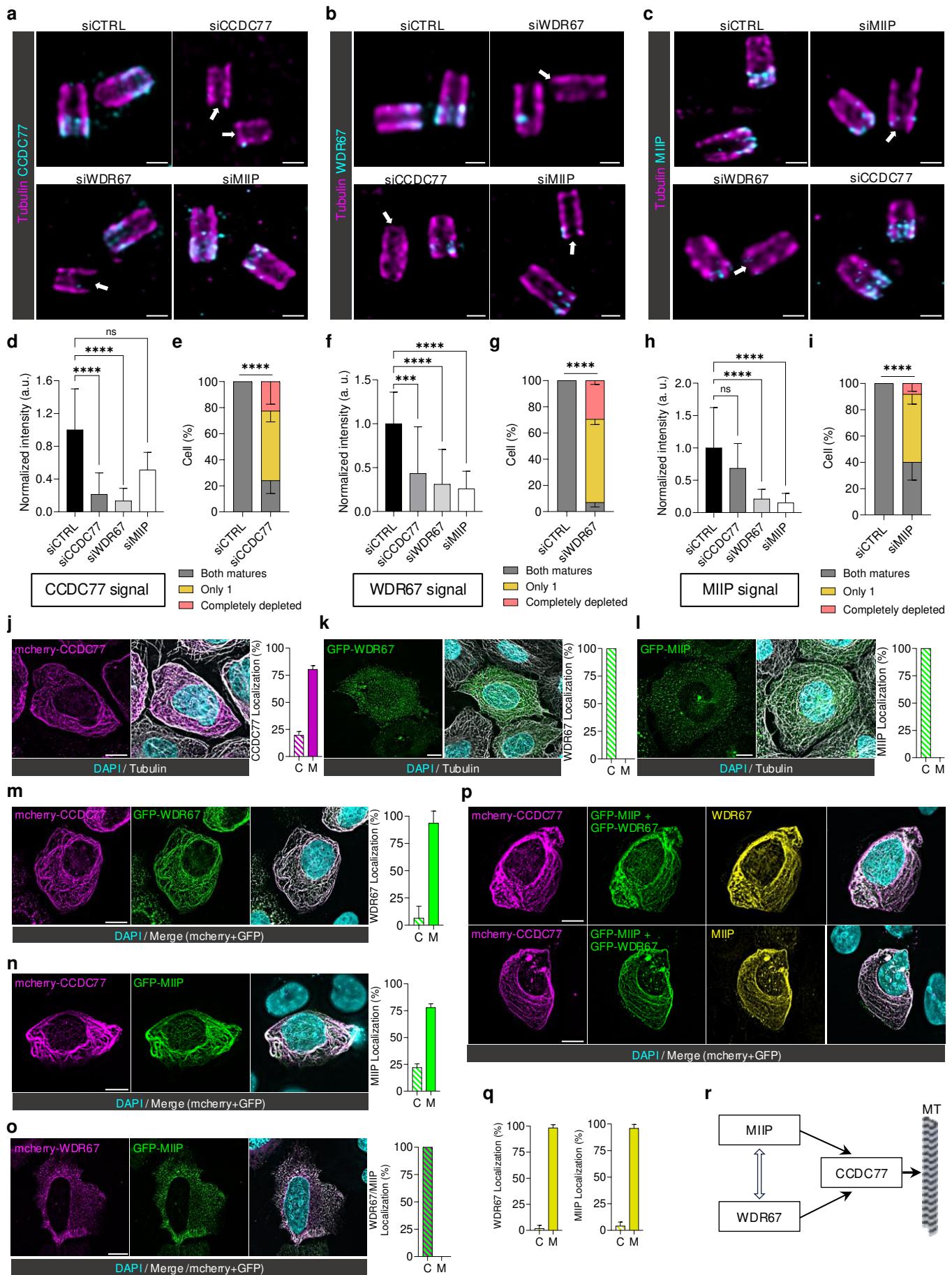


Figure2

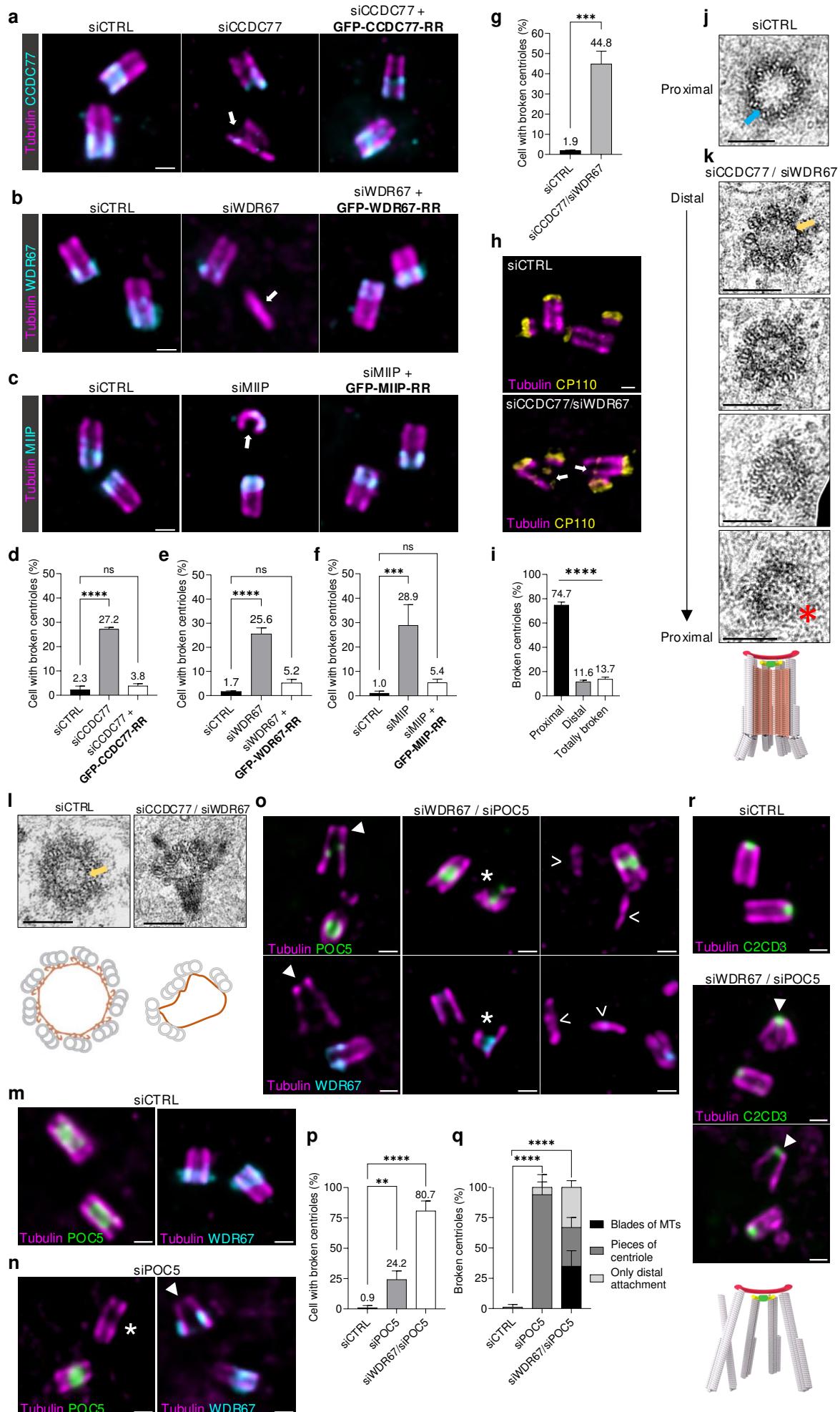


Figure 3

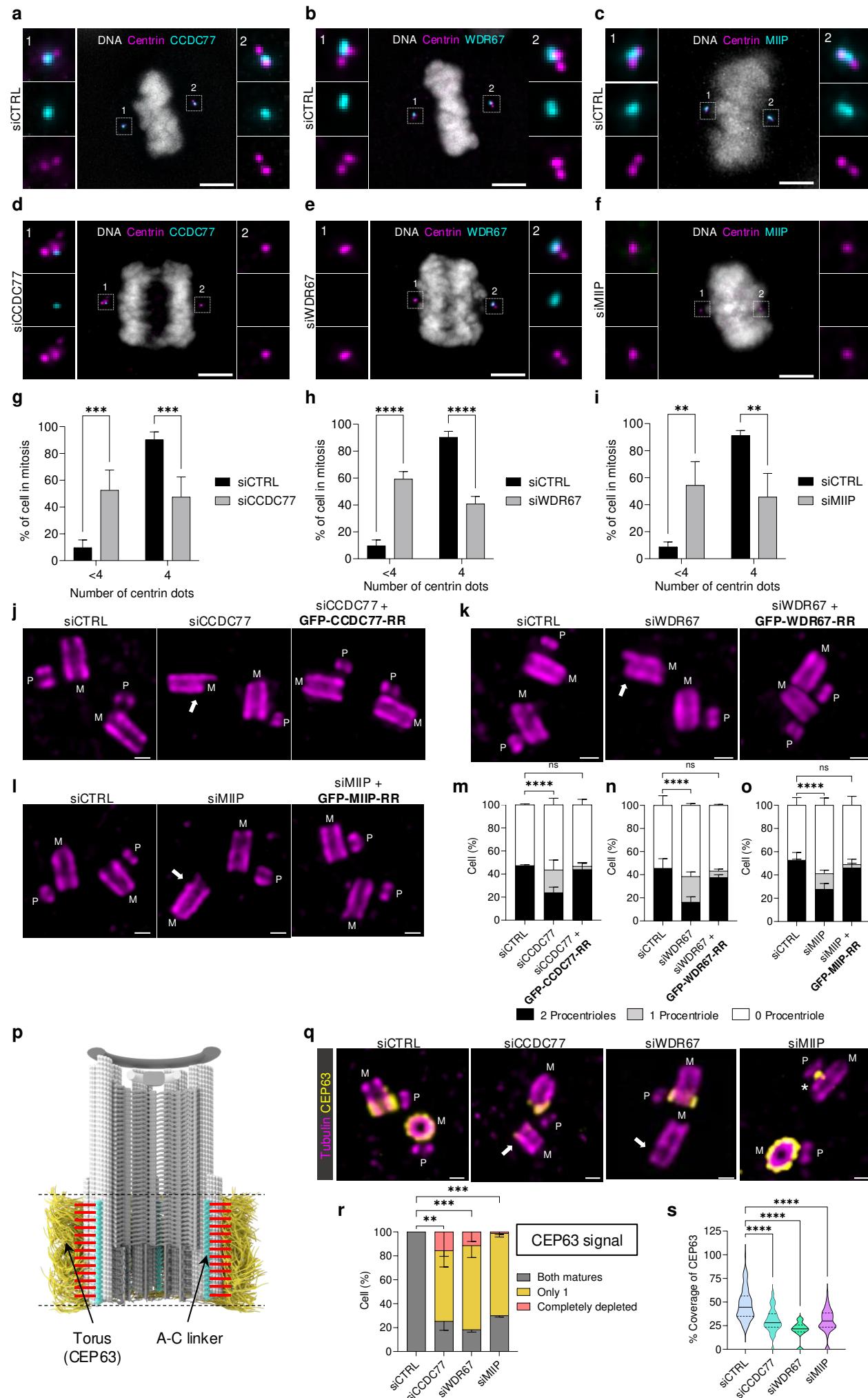
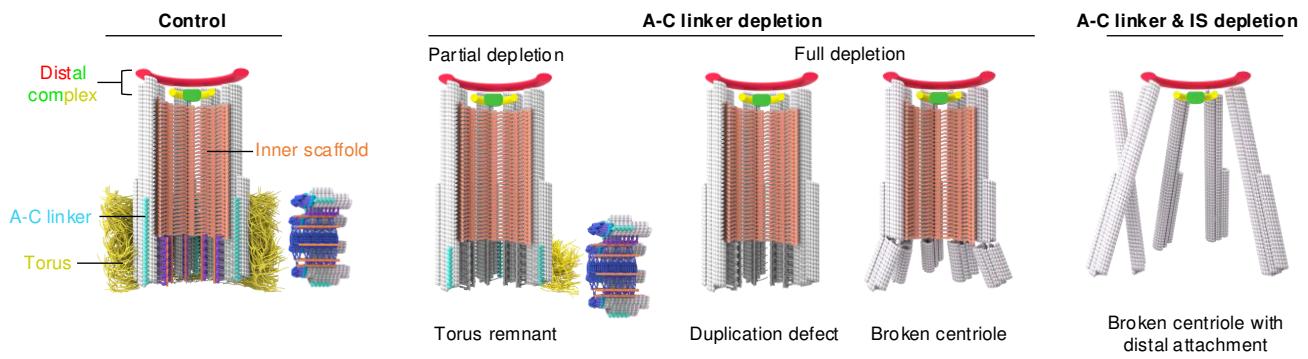
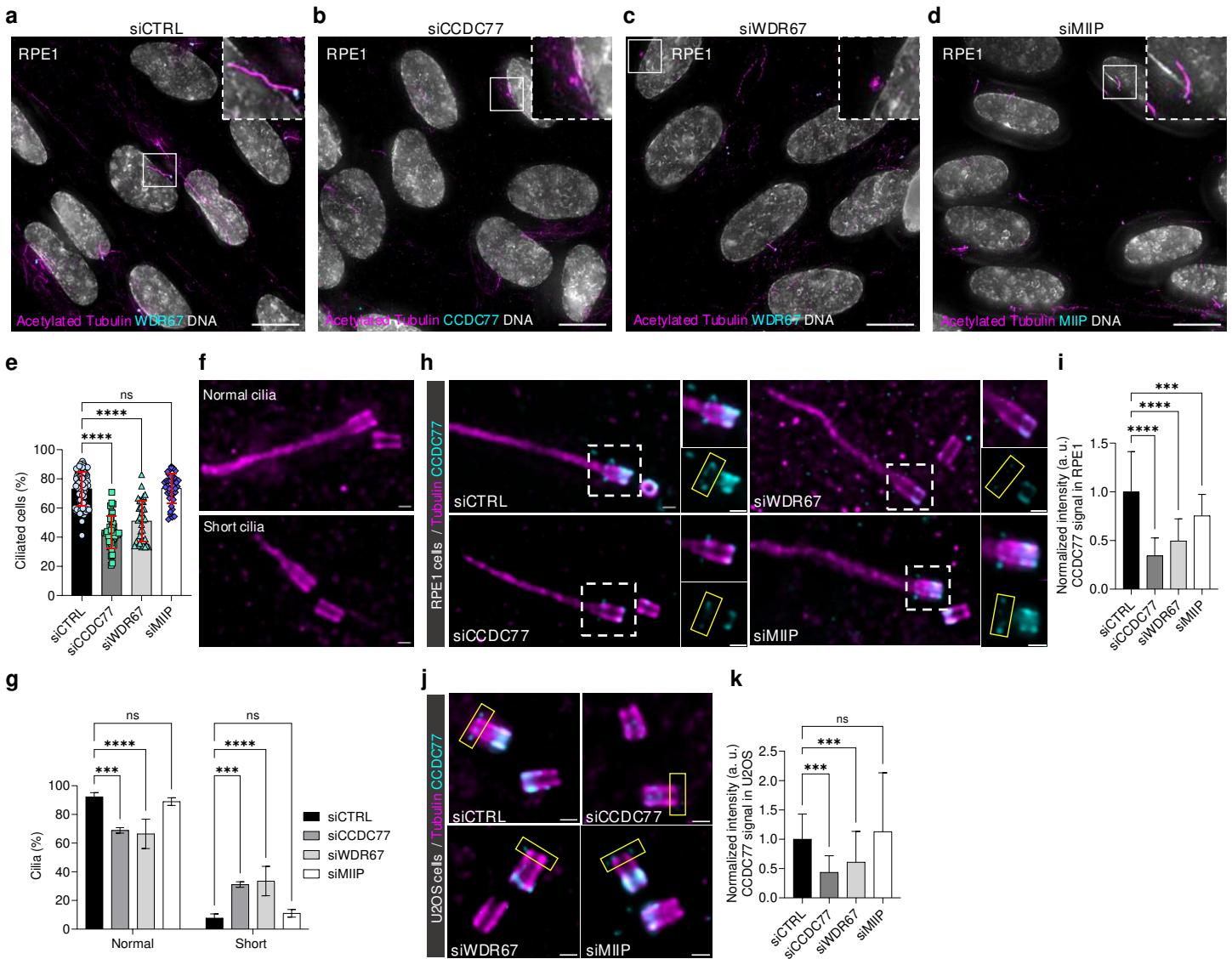
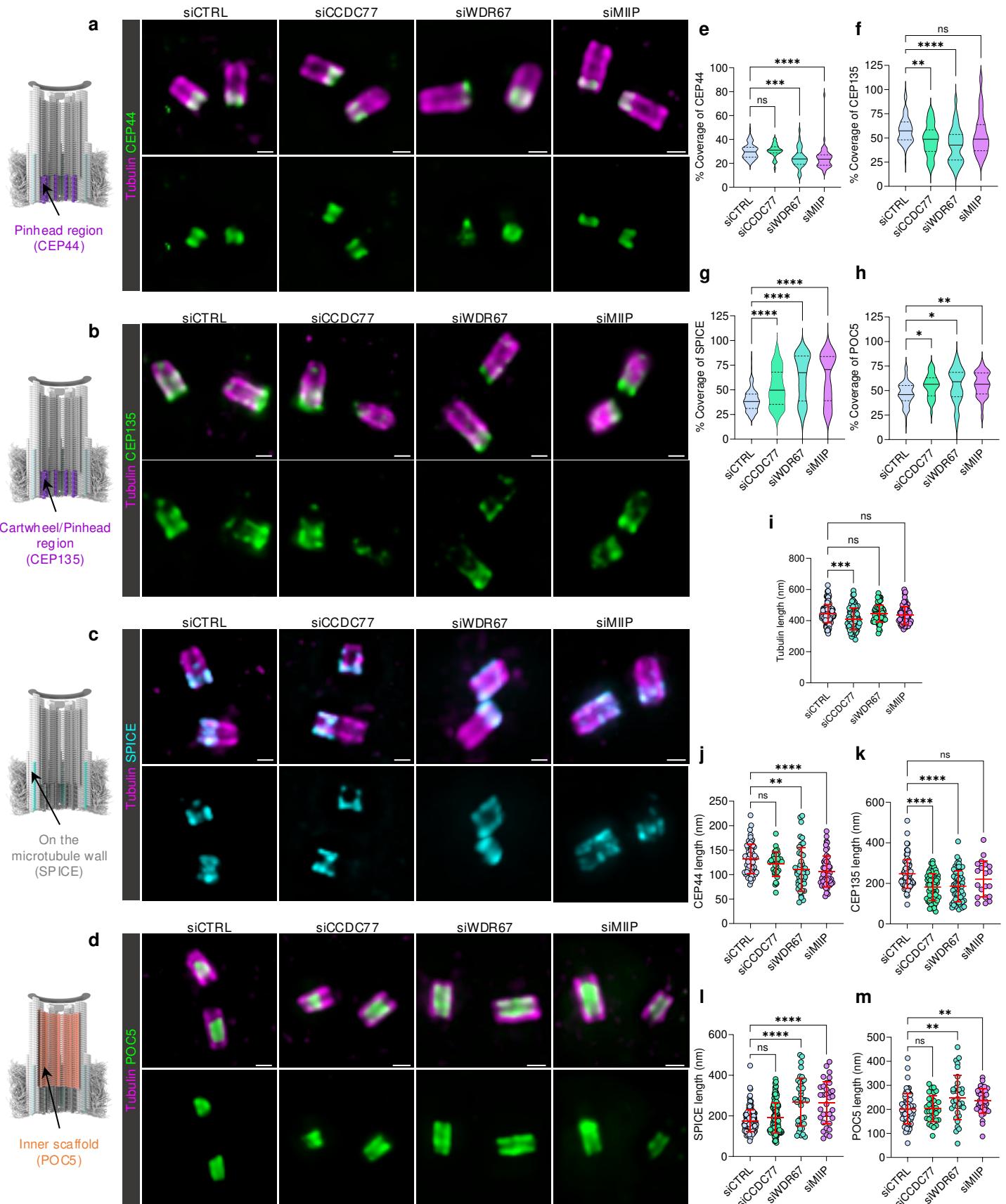
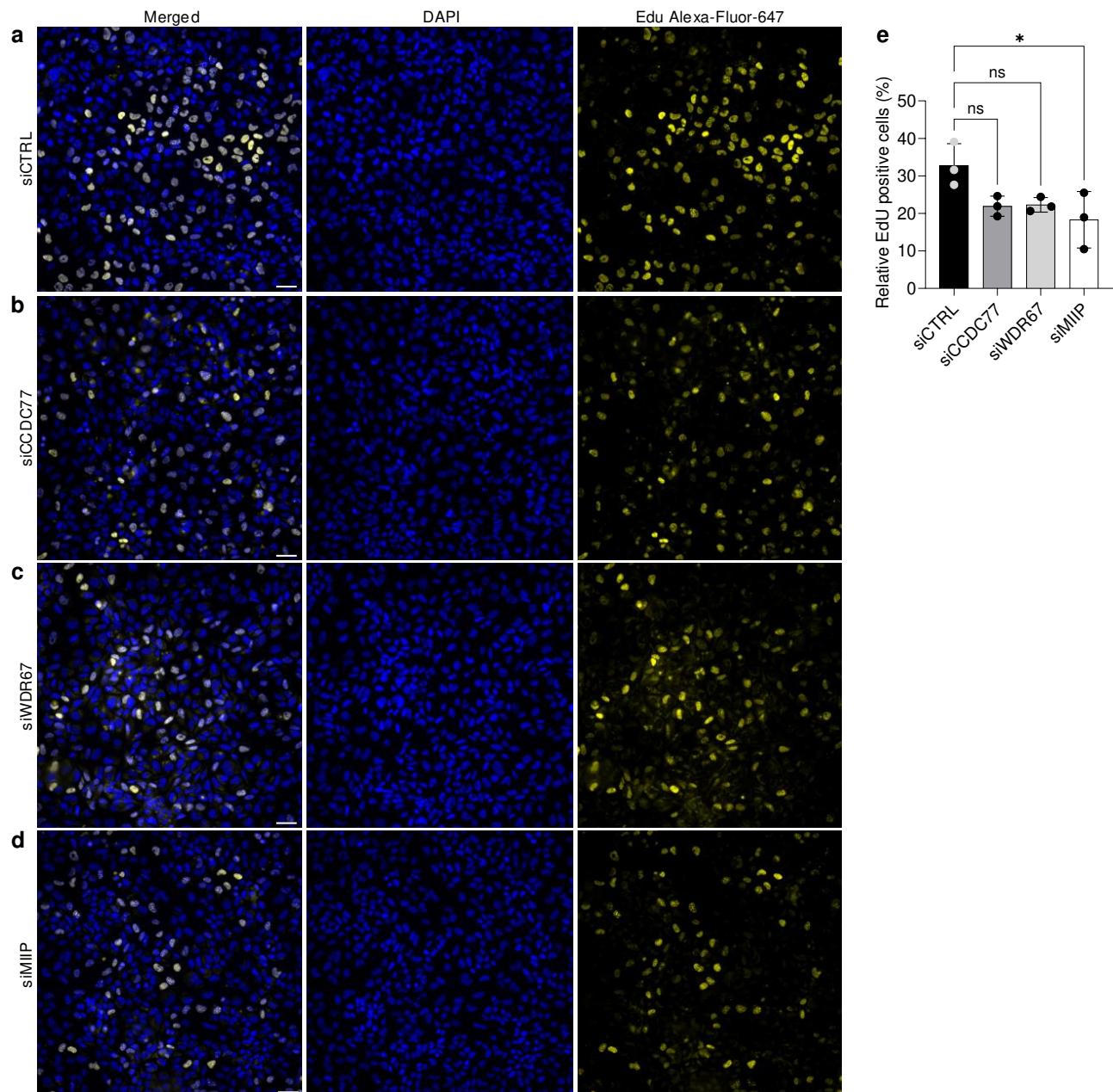


Figure4


Figure5


Extended Data Fig. 1

Extended Data Fig. 2

Extended Data Fig. 3

Extended Data Fig. 4